Кислые и средние соли мочевой кислоты. Мочевая кислота, метаболизм мочевой кислоты и нарушение обмена. Функции мочевой кислоты

1. Является мощным стимулятором центральной нервной системы, ингибируя фосфодиэстеразу, которая служит посредником действия гормонов адреналина и норадреналина. Мочевая кислота пролонгирует (продлевает) действие этих гормонов на ЦНС.

2. Обладает антиоксидантными свойствами – способна взаимодействовать со свободными радикалами.

Уровень мочевой кислоты в организме контролируется на генетическом уровне. Для людей с высоким уровнем мочевой кислоты характерен повышенный жизненный тонус.

Однако повышенное содержание мочевой кислоты в крови (гиперурикемия ) небезопасно. Сама мочевая кислота и, особенно, ее соли ураты (натриевые соли мочевой кислоты) плохо растворимы в воде. Даже при незначительном повышении концентрации они начинают начинают выпадать в осадок и кристаллизоваться, образуя камни. Кристаллы воспринимаются организмом как чужеродный объект. В суставах они фагоцитируются макрофагами, сами клетки при этом разрушаются, из них освобождаются гидролитические ферменты. Это приводит к воспалительной реакции, сопровождающейся сильнейшими болями в суставах. Такое заболевание называется подагра . Другое заболевание, при котором кристаллы уратов откладываются в почечной лоханке или в мочевом пузыре, известно как мочекаменная болезнь .

Для лечения подагры и мочекаменной болезни применяются:

    ингибиторы фермента ксантиноксидазы. Например, аллопуринол – вещество пуриновой природы, является конкурентным ингибитором фермента. Действие этого препарата приводит к повышению концентрации гипоксантина. Гипоксантин и его соли лучше растворимы в воде, и легче выводятся из организма.

    диетическое питание, исключающее продукты, богатые нуклеиновыми кислотами, пуринами и их аналогами: икра рыб, печень, мясо, кофе и чай.

    соли лития, поскольку они лучше растворимы в воде, чем ураты натрия.

Синтез нуклеиновых кислот синтез мононуклеотидов

Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO 2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.

РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ

    Аспарагин . Является донором амидной группы.

    Аспарагиновая кислота .

а) Является донором аминогруппы

    Глицин

а) Является донором активного С 1 .

б) Участвует в синтезе всей молекулой.

    Серин . Является донором активного С 1 .

ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ

В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С 1 -группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина В С – фолиевой кислоты . Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ . Н 2 -зависимой редуктазы , и превращается в тетрагидрофолиевую кислоту (ТГФК).

Активный С­ 1 извлекается из глицина или серина.

В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С 1 . Схематически процесс можно представить так:

НАДН 2 , который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:

    Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.

    Метиленовая группировка может видоизменяться до:

Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.

Поэтому любая из группировок, связанная с ТГФК, называется активным С 1 .

Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:

Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.

После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.

ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:

Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.

СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)

Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.

Пуриновое кольцо строится из СО 2 , аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.

Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.

Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.

Серин: тоже является донором одноуглеродного радикала.

ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин

Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.

На второй стадии фосфорибозиламин взаимодействует с глицином.

Третья стадия - включение углеродного атома, донором которого является глицин или серин.

Затем достраивается шестичленный фрагмент пуринового кольца:

4-ая стадия - карбоксилирование с помощью активной формы СО 2 при участии витамина Н - биотина.

5-ая стадия - аминирование с участием аминогруппы из аспартата.

6-ая стадия - аминирование за счет аминогруппы глутамина.

7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.

Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.

В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.

Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

«Подагра же пошла по богачам и знатным». Эта строка из басни Крылова. Стих называется «Подагра и паук». Болезнью богатых подагру считали в былые времена, когда была дефицитом и стоила больших .

Позволить себе приправу могла лишь знать, порой, налегая на нее. В итоге, откладывалась в суставах, причиняя боль при движениях. Болезнь является нарушением обменных процессов.

Откладывается не просто соль, а соли мочевой кислоты . Их именуют уратами. Переизбыток же в организме мочевой называется гиперурекимией. Ее симптомом могут стать точки на , напоминающие укусы комаров.

Разрушение суставов при повышенной мочевой кислоте

В современности они проявляются не только на богачах. Соль доступна всем, как и многие другие продукты, содержащие ураты. Бывает и пониженное содержание мочевины. Но, прежде чем разбирать диагнозы, ознакомимся со свойствами .

Свойства мочевой кислоты

Героиню открыл Карл Шееле. Шведский химик извлек вещество из почечных . Поэтому, химик назвал соединение . Уже после Шееле обнаружил в моче, но переименовывать вещество не стал.

Это сделал Антуан Фуркруа. Однако, установить элементарный состав соединения не смог ни он, ни Шееле. Формулу узнал Лютус Либих спустя почти век, в середине 19-го столетия. В молекуле героини статьи оказались 5 атомов , 4 , столько же и 3 кислорода.

Мочевая кислота не случайно откладывается в виде в почках. Вещество плохо растворимо в воде – основе человеческого организма. Этанол и диэтиловый эфир соединение тоже «не берут». Диссоциация возможна лишь в растворах щелочей. В и глицерине мочевина растворяется при нагреве.

Мочевая кислота в организме представляет . Они биогенны. Правда, в продуктах героини статьи нет. Зато, в них встречаются пурины, нужные для образования соединения. Больше всего их в мясе и .

Особенно активно мочевая кислота в крови синтезируется после употребления . Много пуринов и в репе, , баклажанах, редьке, бобовых и винограде. Цитрусовые тоже в списке.

Формула мочевой кислоты

Пуринам из пищи нужно лишь расщепиться, получится . Вывод: героиня статьи является производной пурина. выводит из организма лишний азот. Это у и рептилий. У это делает мочевина. Она является продуктом распада белков. же организм производит при распаде нуклеиновых .

В организме мочевая кислота свойства проявляет таутомерии. Это способность легко менять строение. Количество атомов в молекуле и элементы не меняются. Меняется их положение. Разные строения одного вещества именуются изомерами.

Героиня статьи переходит из лактам в лактимное состояние и обратно. Последнее проявляется только в растворах. В состоянии норма мочевой кислоты – лактамный изомер. Ниже приведены их структурные формулы.

Качественно определить героиню статьи можно реакцией окисления. К мочевому соединению добавляют бромную воду, или пероксид водорода. В первом этапе реакции получается аллюксан-диаллуровая .

Она преобразуется в аллоксатин. Остается обдать его . Образуется мурексид. У него темно-. По ним и понимают, что в изначальной смеси имели дело с мочевой кислотой.

Симптомы переизбытка героини статьи, или недостатка относят к заболеваниям. Однако, присутствие в организме несет и . Во-первых, соединение стимулирует центральную систему.

Как? Мочевая выступает посредником между адреналином и его двойником норадреналином. Биологические свойства гормонов схожи. Героиня статьи растягивает их действие. В физиологии это именую пролонгацией.

Вторая роль мочевой – антиоксидантное действие. Вещество захватывает и выводит из организма свободные радикалы. К тому же, героиня статьи препятствует злокачественному перерождению клеток. Но, почему избыток соединения становится опасен? Давайте разбираться.

Уровень мочевой кислоты в организме

Причины повышенной мочевой кислоты указывались. Указывалось и то, что вещество плохо растворимо в воде. В расцвете сил ее в организме 60-70 процентов. У пожилых людей уровень снижается до 40%.

Меж тем, есть предел, который способен раствориться в таком объеме жидкости, как правило, крови. Повышенная мочевая кислота в перенасыщенном растворе выпадает в осадок, кристаллизуется.

Узлы, возникающие при повышенном уровне мочевой кислоты

Склеиваясь меж собой, утрамбовываясь, формируют . Они оседают в почках и суставах. Организм воспринимает образования, как непрошенных гостей. Их облепляют макрофаги – агенты иммунной системы.

Они выискивают чужаков, проглатывают и переваривают. Проглотить и переварить крохотные бактерии – одно, но крупные – совсем другое. Макрофаги начинают разрушаться, высвобождая гидролитические элементы.

Последние способны с помощью воды расщепить соли и . Разрушенные макрофаги, по сути, гнойные разлагающиеся массы. Идет реакция воспаления. Она болезненна. Поэтому страдающие подагрой и не могут ходить, или передвигаются с трудом.

Повышенная мочевая в анализе может выдать зарождающуюся болезнь. На начальной стадии ее проще вылечить, или «законсервировать». Узнаем, какие показатели героини статьи в анализах должны насторожить.

Норма мочевой кислоты в организме

Мочевая кислота у мужчин и женщин имеет одинаковую норму. На весь организм приходятся 1-1,5 грамма. Столько же выводится каждый день. При этом, 40% вещества поступают с едой, остальное синтезирует организм.

Последняя доля неизменна, ведь нуклеиновые расщепляться не перестану. Поэтому, важно следить за количеством солей мочевого соединения, поступающих извне.

Если в рационе много соленого, копченого, мясного да спиртного, риск возникновения камней в почках и подагры вырастает в разы. В разы вырастает риск каменных образований и при почечной недостаточности. Орган начинает не справляться с выведением мочевой из организма.

Пониженная мочевая кислота – тоже тревожный сигнал. Во-первых, нормальный уровень героини статьи отвечает за жизненный тонус . Во-вторых, сброс показателей мочевого вещества может свидетельствовать о проблемах с печенью.

Если выводят героиню статьи почки, то вырабатывает её именно печень. Возникает вопрос, почему орган не справляется со своими функциями.

Порой, мочевая кислота у женщин и мужчин понижается закономерно, временно, не несет серьезной угрозы. Речь, к примеру, об ожогах. Когда они обширны, падает не только уровень , но и гемоглобина.

Пройдет ожог, восстановятся и функции организма. То же касается состояния токсикоза при . Мочевого соединения в организме становится меньше в первом триместре.

Именно в этот период беременности большинство женщин страдают от тошноты и нежелания есть. Это, кстати, и объясняет изменение состава крови. меньше поступает с пищей.

Воспаление суставов при подагре, которая является следствием повышенной мочевой кислоты в организме

Вещества мало в питании и у тех, кто отказался от белкового рациона, или часто пьет крепкие , . Эти напитки обладают мочегонным действием. Выводится больше соединения, чем успевает поступать в организм.

Последним фактором, снижающим уровень героини статьи, является прием ряда препаратов. Среди них: глюкоза, аспирин, триметоприм. Все средства относятся к салицилатам, то есть, содержат . Чтобы она повлияла на показатели мочевого соединения, нужны либо большие дозы, либо длительный прием.

Из вышесказанного понятно, что популярный запрос «диета при мочевой кислоте » — некорректный. При пониженном и повышенном уровнях вещества рекомендуются разные рационы. Ознакомимся с обоими вариантами.

Диеты при пониженном и повышенном уровнях мочевой кислоты

Начнем с повышенных показателей мочевой в крови. Если один из основных источников уратов мясо, нужно ли отказываться от него. Становиться веганом нет нужды.

Главное, перейти на употребление исключительно нежирного мяса и только в варено-паренном виде. От каждодневного приема белковой пищи лучше отказаться. Мясные же блюда 3-4 раза в неделю – норма. Только вот бульоны придется отложить в «долгий ящик».

Диета — основа при лечении повышенной мочевой кислоте

Придется убрать из рациона не только бульоны, жареное, но и копчения, маринады. Воды же, напротив, рекомендовано пить больше, дабы избыток выводился с мочой. Но, рекомендация действует для пациентов со здоровыми почками. При их недостаточности водный режим обговаривается с врачом отдельно.

Лучше всего с выводом героини статьи справляется не простая, а минеральная вода. С ней сравнимы настой на семенах льна, моркови и сельдерея. Запастись стоит, так же, настойками почек березы и клюквенным морсом.

Алкоголь противопоказан. Если выпивка неизбежна, нужно останавливаться на малом количестве . Несколько рюмок – предел. Это объем, которого хватит минимум на неделю.

Если содержание героини статьи в крови достигает 714 микромоль на литр, необходимо медикаментозное лечение, причем, немедленное. Диетой здесь не обойтись. Что же касается предела, после которого мочевое соединение обязательно начинает выпадать в осадок, он составляет 387 микромоль на литр.

Желая снизить уровень мочевой , некоторые начинают голодать. Результат сие дает обратный. Вроде, лишаешь организм 40% , поступающих с пищей … Только вот воспринимается это, как стрессовая ситуация.

В шоковом состоянии системы организма резко увеличивают выработку мочевого соединения, подобно тому, как запасают жир, пережив трудные в пищевом плане времена. Так что, морить себя голодом нужды нет. Питаться нужно полноценно и часто, дробя пищу на небольшие порции.

При повышенной мочевой кислоте нельзя есть мясо

Не сложно догадаться, что диета при пониженной мочевой обратна уже приведенной. Налегать на алкоголь, конечно, не стоит. Зато, в мясных блюдах, жаренном и прочих вкусностях себе можно не отказывать при отсутствии прочих противопоказаний, к примеру, диабета.

Отказывать не стоит и в солнечных ванных. При нахождении на солнце начинается перекисное окисление липидов. Борясь с ним, организм выбрасывает в кровь повышенную дозу мочевого соединения. Ожидать ее стоит и при активных занятиях спортом.

Интересные факты о мочевой кислоте

Напоследок приведем несколько любопытных фактов. Ученые не могут объяснить разность уровня героини статьи в зависимости от группы крови. Так, у обладателей 3-го типа показатели кислоты завышены чаще, чем у носителей крови 1-ой, 2-ой и 4-ой групп. Резус фактор на уровень мочевого вещества не влияет.

Повышенное содержание кислоты в крови ведет не только к подагре и «подогревает» жизненный тонус, но и стимулирует мыслительную активность. Вспомним, Пушкина, Дарвина, да Винчи, Ньютона, Петра 1-го, Эйнштейна.

Документально подтверждено, что все они страдали подагрой. Значит, уровень мочевой кислоты в организмах гениев зашкаливал. Были ли они носителями 3-ей группы крови, не известно. Как бы то ни было, можно тешить себя мыслями о гениальности. Главное, не забывать за грезами о правильном питании и посещениях врача.

Интересно и то, что мочевая кислота нужна не только организму. Вещество используют промышленники. С помощью неё они синтезируют кофеин. Процесс идет в 2-е стадии.

Сначала на мочевую кислоту воздействуют формамидом, а проще говоря, амином муравьиной кислоты. Итогом реакции становится ксантин – одно из пуриновых оснований. Его метилируют демитилсульфатом.

С этого начинается вторая стадия реакции. Она дает кофеин. Хотя, при изменении условий протекания взаимодействия можно получить и теобромин. Он составляет какао. Для синтеза последнего нужен нагрев до 70-ти градусов и присутствие метанола. Кофеин же получают при комнатной температуре в слабощелочной среде.

Мочевая кислота -- бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.

Мочевая кислота была открыта Карлом Шееле (1776) в составе мочевых камней и названа им каменной кислотой -- acide lithique, затем она была найдена им в моче. Название мочевой кислоты дано Фуркруа, её элементарный состав установлен Либихом.

Является двухосновной кислотой (pK1 = 5.75, pK2 = 10.3), образует кислые и средние соли -- ураты.

В водных растворах мочевая кислота существует в двух формах: лактамной (7,9-дигидро-1H-пурин-2,6,8(3H)-трион) и лактимной (2,6,8-тригидроксипурин) с преобладанием лактамной:

Легко алкилируется сначала по положению N-9, затем по N-3 и N-1, под действием POCl3 образует 2,6,8-трихлорпурин.

Азотной кислотой мочевая кислота окисляется до аллоксана, под действием перманганата калия в нейтральной и щелочной среде либо перекиси водорода из мочевой кислоты образуются сначала аллантоин, затем гидантоин и парабановая кислота.

Первым мочевую кислоту удалось синтезировать Горбачёвскому в 1882 году при нагревании гликоколя (амидоуксусной кислоты) с мочевиной до 200--230 °С.

NH2-CH2-COOH + 3CO(NH2)2 = C5H4N4O3+ 3NH3 + 2H2O

Однако такая реакция протекает весьма сложно, и выход продукта ничтожен. Синтез мочевой кислоты возможен при взаимодействии хлоруксусной и трихлормолочной кислот с мочевиной. Наиболее ясным по механизму является синтез Беренда и Роозена (1888 г.), при котором изодиалуровая кислота конденсируется с мочевиной. Мочевую кислоту можно выделить из гуано, где её содержится до 25 %. Для этого гуано необходимо нагреть с серной кислотой (1 ч), затем разбавить водой (12-15 ч), отфильтровать, растворить в слабом растворе едкого калия, отфильтровать, осадить соляной кислотой.

Метод синтеза заключается в конденсации мочевины с цианоуксусным эфиром и дальнейшей изомеризации продукта в урамил (аминобарбитуровую кислоту), дальнейшей конденсации урамила с изоцианатами, изотиоцианатами или цианатом калия.

У человека и приматов -- конечный продукт обмена пуринов образующийся в результате ферментативного окисления ксантина под действием ксантиноксидазы; у остальных млекопитающих мочевая кислота превращается в аллантоин. Небольшие количества мочевой кислоты содержатся в тканях (мозг, печень, кровь), а также в моче и поте млекопитающих и человека. При некоторых нарушениях обмена веществ происходит накопление мочевой кислоты и её кислых солей (уратов) в организме (камни в почках и мочевом пузыре, подагрические отложения, гиперурикемия). У птиц, ряда пресмыкающихся и большинства наземных насекомых мочевая кислота -- конечный продукт не только пуринового, но и белкового обмена. Система биосинтеза мочевой кислоты (а не мочевины, как у большинства позвоночных) в качестве механизма связывания в организме более токсичного продукта азотистого обмена -- аммиака -- развилась у этих животных в связи с характерным для них ограниченным водным балансом (мочевая кислота выводится из организма с минимальным количеством воды или даже в твёрдом виде). Высохшие экскременты птиц (гуано) содержат до 25 % мочевой кислоты. Обнаружена она и в ряде растений. Повышенное содержание мочевой кислоты в организме (крови) человека -- гиперурикемия. При гиперурикемии возможны точечные (похожи на укусы комара) проявления аллергии. Отложения кристаллов урата натрия (соль мочевой кислоты) в суставах называется подагрой.

Мочевая кислота -- исходный продукт для промышленного синтеза кофеина. Синтез мурексида.

Мочевая кислота - это конечный продукт метаболизма пуринов, дальше пурины не распадаются.

Пурины необходимы организму для синтеза нуклеиновых кислот - ДНК и РНК, энергетических молекул АТФ и коферментов.

Источники мочевой кислоты:

  • -- из пуринов пищи
  • -- из распавшихся клеток организма - в результате естественной старости или заболевания
  • -- мочевую кислоту могут синтезировать практически все клетки человеческого тела

Каждый день с продуктами питания (печень, мясо, рыба рис, горох) человек потребляет пурины. В клетках печени и слизистой оболочки кишечника присутствует фермент - ксантиноксидаза, превращающий пурины в мочевую кислоту. Не смотря на то, что мочевая кислота является конечным продуктом обмена, ее нельзя назвать «лишней» в организме. Она необходима для защиты клеток от кислых радикалов, поскольку умеет их связывать.

Общий «запас» мочевой кислоты в организме - 1 грамм, каждый день выделяется 1,5 грамма, из которых 40% пищевого происхождения.

Выведение мочевой кислоты на 75-80% обеспечивают почки, оставшиеся 20-25% -- желудочно-кишечный тракт, где ее частично потребляют кишечные бактерии.

Соли мочевой кислоты называются уратами, являя собой союз мочевой кислоты с натрием (90%) или калием (10%). Мочевая кислота мало растворима в воде, а организм на 60% состоит из воды.

Ураты выпадают в осадок при закислении среды и снижении температуры. Именно поэтому главными болевыми точками при подагре -- болезни высокого уровня мочевой кислоты -- являются отдаленные суставы (большой палец ноги), «косточки» на стопах, уши, локти. Начало болей провоцируется охлаждением.

Повышение кислотности внутренней среды организма бывает и у спортсменов и при сахаром диабете при лактатацидозе, что диктует необходимость контроля мочевой кислоты.

Уровень мочевой кислоты определяют в крови и моче. В поту ее концентрация совсем ничтожна и анализировать общедоступными методиками ее невозможно.

Усиленное образование мочевой кислоты непосредственно в почках бывает при злоупотреблении алкоголем и в печени - как результат обмена некоторых сахаров.

Мочевая кислота в крови - урикемия, а в моче - урикозурия. Повышение мочевой кислоты в крови - гиперурикемия, снижение - гипоурикемия.

По уровню мочевой кислоты в крови диагноз подагры не ставят, нужны симптомы и изменения на рентген-снимках. Если мочевой кислоты в крови больше нормы, а симптомов нет - ставится диагноз «Безсимптомная гиперурикемия». Но, без анализа мочевой кислоты в крови диагноз подагры нельзя считать полностью правомочным.

Нормы мочевой кислоты в крови (в мкмоль/л)

новорожденные -140-340

дети до 15 лет -- 140-340

мужчины до 65 лет -- 220-420

женщины до 65 лет -- 40-340

после 65 лет - до 500

В растительном и животном мире широко распространены гидроксипроизводные пурина, важнейшими из которых являются мочевая кислота, ксантин и гипоксантин. Эти соединения образуются в орга­низме при метаболизме нуклеиновых кислот.

Мочевая кислота . Это кристаллическое, плохо растворимое в воде веще­ство содержится в небольшом количестве в тканях и моче млекопитающих. У птиц и рептилий мочевая кислота выступает как вещество, выводящее из организма избыток азота (аналогично мочевине у млекопитающих). Гуано (высохшие экскременты морских птиц) содержит до 25% мочевой кислоты и служит источником ее получения.

Для мочевой кислоты характерна лактам-лактимная таутомерия . В кристаллическом состоянии мочевая кислота находится в лактатной (оксо-) форме, а в растворе между лактамной и лактимной формами устанавливается динамическое равновесие, в котором преобладает лактатная форма.

Мочевая кислота является двухосновной кислотой и образует соли - ураты - соответственно с одним или двумя эквивалентами щелочи (дигидро- и гидроураты).

Дигидроураты щелочных металлов и гидроурат аммония нерастворимы в воде . При некоторых заболеваниях, например при подагре и мочекаменной болезни, нера­створимые ураты наряду с мочевой кислотой откладываются в суставах и мочевыводя­щих путях.

Окисление мочевой кислоты, а также ксантина и его производных лежит в основе качественного метода определения этих соединений, называемого мурексидной пробой (качественная реакция) .

При действии таких окислителей, как азотная кислота, пероксид водорода или бромная вода, размыкается имидазольный цикл и первоначально образуются пиримидиновые производныеаллоксан идиалуровая кислота . Эти соединения превраща­ются далее в своеобразный полуацеталь -аллоксантин , при обработке кото­рого аммиаком получаютсятемно-красные кристаллы мурексида - аммоние­вой соли пурпуровой кислоты (в ее енольной форме).

    Конденсированные гетероциклы: пурин – строение, ароматичность; производные пурина – аденин, гуанин, их таутомерия (вопр. 22).

Аденин и гуанин . Эти два аминопроизводныгх пурина, показанные ниже в виде 9Н-таутомеров, являются компонентами нуклеиновых кислот.

Аденин входит также в состав ряда коферментов и природных антибиоти­ков. Оба соединения встречаются и в свободном виде в растительныгх и животныгх тканях. Гуанин, например, содержится в чешуе рыб (из которой его и выделяют) и придает ей характерный блеск.

Аденин и гуанин обладают слабыми кислотными и слабыми основными свойствами. Оба образуют соли с кислотами и основаниями; пикраты удобны для идентификации и гравиметрического анализа.

Структурные аналоги аденина и гуанина, действующие по принципу анти­метаболитов этих нуклеиновых оснований, известны как ве­щества, подавляющие рост опухолевый клеток. Из десятков соединений, оказав­шихся эффективными в эксперименте на животных, некоторые используются и в отечественной клиническом практике, например меркаптопурин и тиогуанин (2-амино-6-меркаптопурин). Из других лекарственных средств на базе пурина следует упомянуть иммунодепрессант азатиоприн и антигерпесный препарат ацикловир (известный и как зовиракс).

    Нуклеозиды: строение, классификация, номенклатура; отношение к гидролизу.

Важнейшими гетероциклическими основаниями служат производные пи­римидина и пурина, которые в химии нуклеиновых кислот принято называть нуклеиновыми основаниями.

Нуклеиновые основания . Для нуклеиновых оснований приняты сокращенные обозначения, со­ставленные из первых трех букв их латинских названий.

К числу важнейших нуклеиновых оснований относятся гидрокси- и ами­нопроизводные пиримидина - урацил, тимин, цитозин и пурина -аденин и гуанин . Нуклеиновые кислоты различаются входящими в их состав гетероциклическими основаниями. Так, урацил входит только в РНК, а тимин - только в ДНК.

Аро­матичность гетероциклов в структуре нуклеиновых оснований лежит в основе их относительно высокой термодинамической стабильности. В замещенномпиримидиновом цикле в лактамных формах нуклеиновых основа­ний шестиэлектронное π-облако образуется за счет 2 р-электронов двойной связиC=Cи 4 электронов двух неподеленных пар атомов азота. В молекуле цитози­на ароматический секстет возникает при участии 4 электронов двух π-связей (C=CиC=N) и неподеленной пары электронов пиррольного азота. Делокализация π-электронного облака по всему гетероциклу осуществляется с участиемsp 2 -гибридизованного атома углерода карбонильной группы (одного - в цитозине, гуанине и двух - в урациле, тимине). В карбонильной группе вследствие сильной поляризацииπ-связиC=Оp-орбиталь атома углерода становится как бы вакантной и, следовательно, спо­собной принять участие в делокализации неподеленной пары электронов соседнего амидного атома азота. Ниже с помощью резонансных структур урацила показана де­локализацияp-электронов (на примере одного лактамного фрагмента):

Строение нуклеозидов . Нуклеиновые основания образуют сD-рибозой или 2-дезокси-D-рибозойN-гликозиды, которые в химии нуклеиновый кислот называютнуклеозидами и конкретно - рибонуклеозидами или дезоксирибонуклеозидами соответственно.

D-Рибоза и 2-дезокси-D-рибоза в составе природныгх нуклеозидов нахо­дятсяв фуранозной форме , т. е. в виде остатковβ-D-рибофуранозы или 2-дезокси-β-D-рибофуранозы. В формулах нуклеозидов атомы углерода в фуранозных циклах нумеруются цифрой со штрихом.N -Гликозидная связь осуществляется между аномерным атомом С-1" рибозы (или дезоксирибозы) и атомомN-1 пиримидинового илиN-9 пуринового основания.

(! ) Природные нуклеозиды всегда являютсяβ-аномерами .

Построение названия нуклеозидов иллюстрируется следующими приме­рами:

Однако наиболее употребительными являются названия, производимые от тривиального названия соответствующего гетероциклического основания с суффиксом -идин у пиримидиновытх (например, уридин) и -озин у пуриновых (гуанозин) нуклеозидов. Сокращенные названия нуклеозидов представляют со­бой однобуквенный код, где используется начальная буква латинского названия нуклеозида (с добавлением латинской буквыdв случае дезоксинуклеозидов):

Аденин + Рибоза → Аденозин (А)

Аденин + Дезоксирибоза → Дезоксиаденозин (dA)

Цитозин + Рибоза → Цитидин (С)

Цитозин + Дезоксирибоза → Дезоксицитидин (dC)

Исключением из этого правила является название «тимидин » (а не «дезокситимидин»), которое используется для дезоксирибозида тимина, входя­щего в состав ДНК. Если же тимин связан с рибозой, то соответствующий нуклеозид называют риботимидином.

Являясь N-гликозидами, нуклеозиды отно­сительно устойчивых к щелочам , нолегко гидролизуются при нагревании в присутствии кислот . Пиримидиновые нуклеозиды более устойчивы к гидро­лизу, чем пуриновые.

Имеющейся «небольшой» раз­ницы в строении или конфигурации одного атома углерода (например, С-2") в углеводном остатке оказывается достаточным, чтобы вещество играло роль ингибитора биосинтеза ДНК. Этот принцип используется при создании но­вых лекарственных средств методом молекулярной модификации природных моделей.

    Нуклеотиды: строение, номенклатура, отношение к гидролизу.

Нуклеотиды образуются в результате частичного гидролиза нуклеиновых кислот, либо путем синтеза. Они содержатся в значительных количествах во всех клетках. Нуклеотиды являютсяфосфатами нуклеозидов .

В зависимости от природы углеводного остатка различают дезоксирибонуклеотиды ирибонуклеотиды . Фосфорная кислота обычно этерифицирует спиртовый гидроксил приС-5" или приС-З" в остатках дезоксирибозы (дезоксирибонуклеотиды) или рибозы (рибонуклеотиды). В молекуле нуклеотида для связывания трех структурных компонентов используютсясложноэфирная связь иN -гликозидная связь .

Принцип строения мононуклеотидов

Нуклеотиды можно рассматривать как фосфаты нуклеозидов (эфиры фосфорной кислоты) и каккислоты (в связи с наличием протонов в остат­ке фосфорной кислоты). За счет фосфатного остатка нуклеотидыпроявляют свойства двухоснов­ной кислоты и в физиологических условиях при рН ~7 находятся в полностью ионизированном состоянии.

Для нуклеотидов используют два вида названий. Один из них включает наименование нуклеозида с указанием положения в нем фосфатно­го остатка, например аденозин-3"-фосфат, уридин-5"-фосфат. Другой вид на­званий строится путем добавления сочетания -иловая кислота к названию ос­татка нуклеинового основания, например 3"-адениловая кислота, 5"-уридиловая кислота.

В химии нуклеотидов также принято использование сокращенных назва­ний . Свободные мононуклеотиды, т. е. не находящиеся в составе полинуклеотидной цепи, называют как монофосфаты с отражением этого признака в сокращенном коде буквой «М». Например, аденозин-5"-фосфат имеет сокра­щенное название АМР (в отечественной литературе - АМФ, аденозинмоно- фосфат) и т. п.

Для записи последовательности нуклеотидных остатков в составе полинуклеотидных цепей применяется другой вид сокращений с использованием однобуквенного кода для соответствующего нуклеозидного фрагмента. При этом 5"-фосфаты записываются с добавлением латинской буквы «р» перед од­нобуквенным символом нуклеозида, 3"-фосфаты - после однобуквенного символа нуклеозида. Например, аденозин-5"-фосфат - рА, аденозин-3"-фосфат - Ар и т. п..

Нуклеотиды способны гидролизоваться в присутствии сильных неорга­нических кислот (НС1, НВr, Н 2 SО 4) инекоторых органических кислот (СС1 3 СООН, НСООН, СН 3 СООН) поN-гликозидной связи, фосфорноэфир­ная связь проявляет при этом относительную устойчивость. В то же время под действием фермента 5"-нуклеотидазы гидролизуется сложноэфирная связь, аN- гликозидная связь сохраняется.

    Нуклеотидные коферменты: АТФ–строение, отношение к гидролизу.

Нуклеотиды имеют большое значение не только как мономерные едини­цы полинуклеотидных цепей различных видов нуклеиновых кислот. В живых организмах нуклеотиды являются участниками важнейших биохимических процессов. Особенно они важны в роли коферментов , т. е. веществ, тесно свя­занных с ферментами и необходимых для проявления ими ферментативной активности. Во всех тканях организма в свободном состоянии содержатся моно-, ди- и трифосфаты нуклеозидов.

Особенно известны аденинсодержащие нуклеотиды :

Аденозин-5"-фосфат (АМР, или в русской литературе АМФ);

Аденозин-5"-дифосфат (ADP, или АДФ);

Аденозин-5"-трифосфат (АТР, или АТФ).

Нуклеотиды, фосфорилированные в разной степени, способны к взаимо­превращениям путем наращивания или отщепления фосфатных групп. Дифосфатная группа содержит одну, а трифосфатная - две ангидридные связи, обладающие большим запасом энергии и поэтому называемые макроэргическими . При расщеплении макроэргической связи Р-О выделяется -32 кДж/моль. С этим связана важнейшая роль АТФ как «поставщика» энергии во всех живых клетках.

Взаимопревращения фосфатов аденозина.

В приведенной выше схеме взаимопревращений формулы АМФ, АДФ и АТФ со­ответствуют неионизированному состоянию молекул этих соединений. С участием АТФ и АДФ в организме осуществляется важнейший биохи­мический процесс - перенос фосфатных групп.

    Нуклеотидные коферменты: НАД + и НАДФ + – строение, алкилпиридиниевый ион и его взаимодействие с гидрид–ионом как химическая основа окислительного действия, НАД + .

Никотинамидадениндинуклеотиды . К этой группе соединений относят­сяникотинамидадениндинуклеотид (NAD, или НАД) и его фосфат (NADP, или НАДФ). Эти соединения выполняют важную ролькоферментов в реакциях биологического окисления органических субстратов путем их дегидрирования (с участием ферментов дегидрогеназ). Поскольку эти коферменты являются участниками окислительно-восстановительных реакций, то они могут существовать как в окисленной (НАД+, НАДФ+), так и в восстановленной (НАДН, НАДФН) формах.


Структурным фрагментом НАД + и НАДФ + являетсяникотинамидный ос­таток в видепиридиниевого иона . В составе НАДН и НАДФН этот фрагмент превращается в остаток замещенного 1,4-дигидропиридина.

В ходе биологического дегидрирования, являющегося особым случаем окисления, субстрат теряет два атома водорода, т. е. два протона и два элект­рона (2Н+, 2е) или протон и гидрид-ион (Н+ и Н). Кофермент НАД+ рассматривается как акцептор гидрид-иона . В результате восстановления за счет присоединения гидрид-иона пиридиниевое кольцо переходит в 1,4-дигидропиридиновый фрагмент. Данный процесс обратим.

В ходе окисления ароматический пиридиниевый цикл переходит в неарома­тический 1,4-дигидропиридиновый цикл. В связи с потерей ароматичности возраста­ет энергия НАДН по сравнению с НАД+. Увеличение энергетического содержания происходит за счет части энергии, выделяющейся в результате превращения спирта в альдегид. Таким образом, НАДН запасает энергию, которая затем расходуется в дру­гих биохимических процессах, требующих энергетических затрат.

    Нуклеиновые кислоты: РНК и ДНК, первичная структура.

Нуклеиновые кислоты занимают исключительное место в процессах жиз­недеятельности живых организмов. Они осуществляют хранение и передачу генетической информации и являются инструментом, с помощью которого происходит управление биосинтезом белков.

Нуклеиновые кислоты представляют собой высокомолекулярные соеди­нения (биополимеры), построенные из мономерных единиц - нуклеотидов, в связи с чем нуклеиновые кислоты называют также полинуклеотидами.

Структура каждого нуклеотида включает остатки углевода, гетероцикли­ческого основания и фосфорной кислоты. Углеводными компонентами нук­леотидов являются пентозы:D-рибоза и 2-дезокси-D-рибоза.

По этому признаку нуклеиновые кислоты делятся на две группы:

рибонуклеиновые кислоты (РНК), содержащие рибозу;

дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.

Матричные (мРНК);

Рибосомные (рРНК);

Транспортные (тРНК).

Первичная структура нуклеиновых кислот. ДНК и РНК имеют общие черты вструктуре макромолекул :

Каркас их полинуклеотидных цепей состоит из чередующихся пентозных и фосфатных остатков;

Каждая фосфатная группа образует две сложноэфирные связи: с атомом С-З" предыдущего нуклеотидного звена и с атомом С-5" - последующего нуклео­тидного звена;

Нуклеиновые основания образуют с пентозными остатками N-гликозидную связь.

Приведено строение произвольного участка цепи ДНК, вы­бранного в качестве модели с включением в нее четырех основных нуклеино­вых оснований - гуанина (G), цитозина (С), аденина (А), тимина (Т). Принцип построения полинуклеотидной цепи РНК такой же, как и у ДНК, но с двумя отличиями: пентозным остатком в РНК служитD-рибофураноза, а в наборе нуклеиновых оснований используется не тимин (как в ДНК), а урацил.

(!) Один конец полинуклеотидной цепи, на котором находится нуклеотид со свободной 5"-ОН-группой, называется5"-концом . Другой конец цепи, на котором находится нуклеотид со свободной З"-ОН-группой, называетсяЗ"-концом .

Нуклеотидные звенья записываются слева направо, начиная с 5"-концевого нуклеотида. Запись строения цепи РНК осуществляется по таким же прави­лам, при этом буква «d» опускается.

С целью установления нуклеотидного состава нуклеиновых кислот прово­дят их гидролиз с последующей идентификацией полученных продуктов. ДНК и РНК ведут себя по-разному в условиях щелочного и кислотного гид­ролиза. ДНК устойчивы к гидролизу в щелочной среде , в то время какРНК очень быстро гидролизуются до нуклеотидов, которые, в свою очередь, спо­собны отщеплять остаток фосфорной кислоты с образованием нуклеозидов.N -Гликозидные связи устойчивы в щелочной и нейтральной средах . Поэтому для их расщепленияиспользуется кислотный гидролиз . Оптимальные результаты дает ферментативный гидролиз с исполь­зованием нуклеаз, в том числе и фосфодиэстеразы змеиного яда, которые рас­щепляют сложноэфирные связи.

Наряду с нуклеотидным составом важнейшей характеристикой нуклеино­вых кислот являетсянуклеотидная последовательность , т. е. порядок чередова­ния нуклеотидных звеньев. Обе эти характеристики входят в понятие первич­ная структура нуклеиновых кислот.

Первичная структура нуклеиновых кислот определяется последовательно­стью нуклеотидных звеньев, связанных фосфодиэфирными связями в не­прерывную цепь полинуклеотида.

Общий подход к установлению последовательности нуклеотидных звень­ев заключается в использовании блочного метода. Сначала полинуклеотидную цепь направленно расщепляют с помощью ферментов и химических ре­агентов на более мелкие фрагменты (олигонуклеотиды), которые расшифро­вывают специфическими методами и по полученным данным воспроизводят последовательность строения всей полинуклеотидной цепи.

Знание первичной структуры нуклеиновых кислот необходимо для выяв­ления связи между их строением и биологической функцией, а также для по­нимания механизма их биологического действия.

Комплементарность оснований лежит в основе закономерностей, кото­рым подчиняется нуклеотидный состав ДНК. Эти закономерности сформу­лированыЭ. Чаргаффом :

Количество пуриновых оснований равно количеству пиримидиновых оснований;

Количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина;

Количество оснований, содержащих аминогруппу в положениях 4 пири­мидинового и 6 пуринового ядер, равно количеству оснований, содержащих в этих же положениях оксогруппу. Это означает, что сумма аденина и цитозина равна сумме гуанина и тимина.

Для РНК эти правила либо не выполняются, либо выполняются с некото­рым приближением, поскольку в РНК содержится много минорных оснований.

Комплементарность цепей составляет химическую основу важнейшей функции ДНК - хранения и передачи наследственных признаков. Сохран­ность нуклеотидной последовательности является залогом безошибочной пе­редачи генетической информации. Изменение последовательности основа­ний в любой цепи ДНК приводит к устойчивым наследственным изменени­ям, а следовательно, и к изменениям в строении кодируемого белка. Такие изменения называют мутациями . Мутации могут происходить в результате за­мены какой-либо комплементарной пары оснований на другую. Причиной такой замены может служить сдвиг таутомерного равновесия.

Например, в случае гуанина сдвиг равновесия в сторону лактимной формы обусловлива­ет возможность образования водородных связей с необычным для гуанина ос­нованием - тимином и возникновение новой пары гуанин-тимин вместо традиционной пары гуанин-цитозин.

Замена «нормальных» пар оснований передается затем при «переписыва­нии» (транскрипции) генетического кода с ДНК на РНК и приводит в итоге к изменению аминокислотной последовательности в синтезируемом белке.

    Алкалоиды: химическая классификация; основные свойства, образование солей. Представители: хинин, никотин, атропин.

Алкалоиды представляют собой большую группу природных азотсодержа­щих соединений преимущественно растительного происхождения. Природные алкалоиды служат моделями для создания новых лекарственных препаратов, часто более эффективных и в то же время более простых по структуре.

В настоящее время в зависимости от происхождения атома азота в структуре молекулы, среди алкалоидов выделяют:

    Истинные алкалоиды – соединения, которые образуются из аминокислот и содержат атом азота в составе гетероцикла (гиосциамин, кофеин, платифиллин).

    Протоалкалоиды соединения, которые образуются из аминокислот и содержат алифатический атом азота в боковой цепи (эфедрин, капсаицин).

    Псевдоалкалоиды – азотсодержащие соединения терпеновой и стероидной природы (соласодин).

В классификации алкалоидов существует два подхода.Химическая клас­сификация основана на строении углеродно-азотного скелета:

    Производные пиридина и пиперидина (анабазин, никотин).

    С конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - атропин, кокаин, гиосциамин, скополамин.

    Производные хинолина (хинин).

    Производные изохинолина (морфин, кодеин, папаверин).

    Производные индола (стрихнин, бруцин, резерпин).

    Производные пурина (кофеин, теобромин, теофилин).

    Производные имидазола (пилокарпин)

    Стероидные алкалоиды (соласонин).

    Ациклические алкалоиды и алкалоиды с экзоциклическим атомом азота (эфедрин, сферофизин, колхамин).

В основу другого вида классификации алкалоидов положен ботанический признак, согласно которому алкалоиды объединяют по растительным источ­никам.

Большинство алкалоидов обладает основными свойствами , с чем связано их название. В растениях алкалоиды содержатся в виде солей с органическими кис­лотами (лимонной, яблочной, винной, щавелевой).

Выделение из растительного сырья:

1-ый способ (экстракция в виде солей):

2-ой способ (экстракция в виде оснований):

Основные (щелочные) свойства алкалоидов выражены в различной степени. В природе чаще встречаются алкалоиды, которые относятся к третичным, реже - к вторичным либо к четвертичным аммонийным основаниям.

Благодаря основному характеру алкалоиды образуют соли с кислотами разной степени прочности. Соли алкалоидов легко разлагаются под действием едких щелочей и аммиака . При этом выделяются свободные основания.

Благодаря основному характеру, алкалоиды при взаимодействии с кислотами образуют соли . Это свойство используется при выделении и очистке алкалоидов, их количественном определении и получении препаратов.

Алкалоиды-соли хорошорастворимы в воде и этаноле (особенно в разбавленном) при нагревании,плохо или совсем не растворимы в органических растворителях (хлороформ, этиловый эфир и др.). В качествеисключения можно назвать скополамина гидробромид, гидрохлориды кокаина и некоторых опийных алкалоидов.

Алкалоиды-основания обычноне растворяются в воде , но легко растворяются в органических растворителях.Исключение составляют никотин, эфедрин, анабазин, кофеин, которые хорошо растворяются как в воде, так и в органических растворителях.

Представители.

Хинин - алкалоид, выделенный из коры хинного дерева (Cinchona oficinalis ) - представляет собой бесцветные кристаллы очень горького вкуса. Хинин и его производные обладают жаропонижающим и антималярийным действием

Никотин - основной алкалоид табака и махорки. Никотин весьма ядовит, смертельная доза для человека составляет 40 мг/кг, причем при­родный левовращающий никотин в 2-3 раза токсичнее синтетического пра­вовращающего.

Атропин - рацемическая форма гиосциамина, обладает холиноблокирующим действием (спазмолитическим и мидриатическим).

    Алкалоиды: метилированные ксантины (кофеин, теофиллин, теобромин); кислотно-основные свойства; их качественные реакции.

Пуриновые алкалоиды следует рассматривать как N -метилированные ксантины – в основе ядро ксантина (2,6-дигидроксопурин). Наиболее известными представителями этой группы являютсякофеин (1,3,7-триметилксантин),теобромин (3,7-диметилксантин) итеофиллин (1,3-диметилксантин), которые содержатся в зернах кофе и чае, шелухе какао-бо­бов, в орехах кола. Кофе­ин, теобромин и теофиллин широко применяются в медицине. Кофеин ис­пользуется преимущественно как психостимулятор, теобромин и теофиллин - как сердечно-сосудистые средства.

Что такое мочевая кислота? Это составляющая не только мочи, но и крови. Она является маркером обмена пуринов. Ее концентрация в крови помогает специалистам диагностировать ряд заболеваний, в том числе и подагру. Опираясь на показатель уровня содержания данного элемента в крови можно контролировать ответную реакцию организма на лечение.

Что это за элемент?

В организме человека постоянно идут обменные процессы. Результатом обмена могут стать соли, кислоты, щелочи и множество других химических соединений. Чтобы от них избавиться, их нужно доставить в соответствующий отдел организма. Эта задача выполняется при помощи крови, которая фильтруется почками. Таким образом, объясняется присутствие мочевой кислоты в моче.

Разберем, что это такое более подробно. Мочевая кислота – это конечный продукт распада пуриновых оснований. Эти элементы попадают в организм вместе с пищей. Пурины участвуют в процессе синтеза нуклеиновых кислот (ДНК и РНК), энергетических молекул АТФ, а также коферментов.

Стоит заметить, что пурины – это не единственный источник образования мочевой кислоты. Она может быть результатом распада клеток организма из-за заболевания или старости. Источником для образования мочевой кислоты может стать синтез в любой клетке человеческого тела.

Распад пуринов происходит в печени и кишечнике. Клетки слизистой оболочки выделяют специальный фермент – ксантиноксидаза, с которым и вступает в реакцию пурины. Конечным результатом этого «превращения» является кислота.

В ее состав входят соли натрия и кальция. Доля первого составляющего 90%. Помимо солей, сюда входят водород, кислород, азот и углерод.

Если мочевая кислота выше нормы — это свидетельствует о нарушении процесса обмена. В результате такого сбоя у людей происходит отложение солей в тканях, и как следствие развиваются тяжелые заболевания.

Функции мочевой кислоты

Несмотря на то, что избыток мочевой кислоты, может нанести существенный вред организму, без нее все же обойтись нельзя. Она выполняет защитные функции и обладает полезными свойствами.

Например, в процессе белкового обмена, она выступает в роли катализатора. Ее влияние распространяется и на гормоны, отвечающие за мозговую активность — адреналин и норадреналин. Это значит, что ее наличие в крови помогает стимулировать работу головного мозга. Ее действие подобно кофеину. Люди, у которых повышенное содержание мочевой кислоты в крови с рождения, более активны и инициативны.

Обладает кислота и антиоксидантными свойствами, помогающими заживлять раны и бороться с воспалением.

Мочевая кислота в организме человека выполняет защитные функции. Она борется со свободными радикалами. В результате снижается риск появления и развития доброкачественных и раковых опухолей.

Сдача анализа

Подобный анализ назначают, чтобы определить состояние здоровья больного, а также, чтобы диагностировать заболевание, которое могло вызвать повышение уровня мочевой кислоты в крови. Для получения правдивых результатов, необходимо предварительно подготовиться к сдаче крови.

За 8 часов до посещения лаборатории нельзя есть, забор биоматериала проводится натощак. Следует исключить из меню острую, соленую и перченую пищу, мясо и субпродукты, бобовые. Этой диеты следует придерживаться сутки до сдачи крови. В этот же период нужно отказаться от употребления алкогольных напитков, особенно от вина и пива.

Мочевая кислота больше нормы может быть из-за стрессов, эмоционального перенапряжения или физической нагрузки накануне сдачи анализа.

Искажать результаты могут и лекарственные препараты с мочегонным эффектом, витамин С, кофеин, бета-адреноблокаторы и ибупрофен. Если отказаться от подобных медикаментов нельзя, то следует предупредить врача перед сдачей анализа.

В лаборатории будет браться венозная кровь. Результаты исследования готовятся в течение суток.

Норма мочевой кислоты в анализе крови

Если полученные результаты биохимического анализа показали цифры соответствующие данным приведенным в таблице ниже, то все в норме.

Возрастная категория (лет) Нормы мочевой кислоты (мкмоль/л)
Дети до 12 120-330
До 60 Мужчины 250-400
Женщины 200-300
От 60 Мужчины 250-480
Женщины 210-430
От90 Мужчины 210-490
Женщины 130-460

Как видно из таблицы, уровень с возрастом повышается. Наибольшее значение у пожилых мужчин – это норма мочевой кислоты в крови, так как потребность в белках у мужского организма выше. Это значит, что продукты богатые пурином они потребляют больше и как результат — повышенная мочевая кислота в крови.

Что может вызвать отклонения от нормы?

Уровень мочевой кислоты в крови зависит от равновесия 2-х процессов:

  • Синтеза белка;
  • Интенсивности выведения конечных продуктов белкового обмена.

Когда происходит расстройство обмена белка, то это может спровоцировать увеличение содержания в крови этой кислоты. Концентрации мочевой кислоты в плазме крови выше нормального диапазона обозначается как гиперурикемия, концентрация ниже нормы — гипоурикемия. Концентрации мочевой кислоты в моче выше и ниже нормы известны как гиперурикозурия и гипоурикозурия. Уровни мочевой кислоты в слюне могут быть связаны с уровнем мочевой кислоты в крови.

Причины гиперурикемии:

  • Прием диуретиков (мочегонных веществ);
  • Снижение интенсивности экскреции веществ почками;
  • Токсикоз;
  • Алкоголизм;
  • Почечная недостаточность;
  • Недоедание или длительное голодание.

Завышенное содержание может возникнуть и при заболеваниях, таких как, СПИД, сахарный диабет, рак и др.

Стоит отметить, что даже незначительно повышенный уровень этого вещества, может стать причиной образования твердых осадков солей мочевой кислоты — уратов — в органах и тканях.

Повышенный показатель

Теперь узнаем, почему мочевая кислота в крови повышена: причины, симптомы и последствия.

В медицине гиперурикемию разделяют на два типа: первичную и вторичную.

Первичная гиперурикемия

Данный тип является врожденным или идиопатическим. Подобная патология встречается с частотой 1%. У таких больных имеется наследственный дефект в структуре фермента, что отражается на обработке пурина. В итоге имеется высокое содержание мочевой кислоты в крови.

Появление вторичной гиперурикемии может возникнуть из-за неправильного питания. Употребление в больших количествах продуктов содержащих пурин может существенно повысить выведение мочевой кислоты с мочой.

Гиперурикемия этого типа может быть связана с такими состояниями:

Подагра — болезненное состояние, вызванное игольчатыми кристаллами мочевой кислоты, осаждающимися в суставах, капиллярах, коже и других тканях. Подагра может возникнуть, если уровень мочевой кислоты в сыворотке достигает 360 мкмоль/л, но бывают случаи, когда значение мочевой кислоты в сыворотке доходит до 560 мкмоль/л, но подагры не вызывает.

В человеческом организме пурины метаболизируются в мочевую кислоту, которая затем выводится с мочой. Регулярное потребление некоторых видов богатых пурином продуктов — мяса, особенно ливера говядины и свинины (печень, сердце, язык, почки) и некоторых виды морепродуктов, включая анчоусы, сельдь, сардины, мидии, гребешки, форель, пикшу, скумбрию и тунец. Существуют и продукты, употребление которых менее опасно: индюшатина, курятина и крольчатина. Умеренное потребление богатых пурином овощей не связано с повышенным риском подагры. Подагру раньше называли «болезнью королей», поскольку изысканные блюда и красное вино содержат большое количество пуринов.

Синдром Леша-Нихана

Это чрезвычайно редкое наследственное расстройство, также связано с высоким уровнем мочевой кислоты в сыворотке. При этом синдроме наблюдаются спастичность, непроизвольное движение и когнитивная отсталость, а также проявления подагры.

Гиперурикемия может увеличить факторы риска сердечно-сосудистых заболеваний

Камни в почках

Уровни насыщения мочевой кислоты в крови могут привести к одной форме камней в почках, когда ураты кристаллизуются в почках. Кристаллы уксусной кислоты также могут способствовать образованию камней оксалата кальция, действуя как «затравочные кристаллы»

Синдром Келли-Сигмиллера;

Повышенная активность синтеза фосфорибозилпирофосфатсинтетазы;

Пациенты с данным заболеванием делают биохимический анализ на повышение мочевой кислоты ежегодно.

Вторичная гиперурикемия

Данное явление может быть признаком таких заболеваний:

  • СПИД;
  • Синдром Фанкони;
  • Раковые опухоли;
  • Сахарный диабет (Гиперурикемия может быть следствием сопротивляемости к инсулину при диабете, а не его предшественником);
  • Ожоги высокой степени;
  • Синдром гиперэозинофилии.

Существуют и другие причины повышения мочевой кислоты — нарушение в функционировании почек. Они не могут вывести лишние кислоты из организма. В результате могут появиться камни в почках.

Высокий уровень мочевой кислоты наблюдается при таких заболеваниях:

  • Пневмония;
  • Отравление метиловым спиртом;
  • Экзема;
  • Брюшной тиф;
  • Псориаз;
  • Рожистое воспаление;
  • Лейкоз.

Бессимптомная гиперурикемия

Бывают случаи, когда у больного симптоматика заболевания отсутствует, а показатели повышенные. Данное состояние называется бессимптомной гиперурикемией. Оно возникает при остром подагрическом артрите. Показатели при данном заболевании нестабильны. Вначале вроде бы нормальное содержание кислоты, но спустя время цифры могут увеличиться в 2 раза. При этом данные перепады на самочувствие пациента не отражаются. Такое протекание заболевание возможно у 10% больных.

Симптомы гиперурикемии

При гиперурикемии симптомы у различных возрастных групп различны.

У совсем маленьких заболевание проявляется в виде кожных высыпаний: диатезов, дерматитов, аллергии или псориаза. Особенность подобных проявлений – это устойчивость к стандартным методам терапии.

У детей постарше симптоматика несколько иная. У них может болеть живот, быть несвязная речь и энурез.

Протекание заболевания у взрослых сопровождается болью в суставах. Первыми в зону поражения попадают стопы и суставы пальцев рук. Затем болезнь распространяет свое действие на коленные и локтевые суставы. В запущенных случаях, кожный покров над зоной поражения краснеет и становится горячим. Со временем у больных начинает болеть живот и поясница во время мочеиспускания. Если своевременно не принять меры, то пострадают сосуды и нервная система. Человека будут мучить бессонница и головная боль. Все это может привести к инфаркту, стенокардии и артериальной гипертензии.

Лечение

Некоторые специалисты для того, чтобы мочевая кислота в крови была в норме, назначают лекарственные препараты. Но определенная пищевая диета на протяжении остатка жизни является более эффективным методом лечения.

Если у пациента была обнаружена гиперурикемия, то лечение включает придерживание диеты. В рацион больного дополнительно включают:

Морковный сок;

Березовый сок;

Семя льна;

Сок сельдерея;

Овсяной отвар;

Клюквенный морс;

Настой из шиповника.

Эти травяные настои и соки способствуют быстрейшему растворению и вымыванию соляного осадка из организма.

Исключается жирное, мясные бульоны, жареное, соленое, копченое и маринованные продукты. Мясо можно есть только варенное или запеченное. Рекомендуется отказаться от употребления мясных бульонов, поскольку пурины при их приготовлении переходят из мяса в отвар. Ограничение по приему мяса – 3 раза в неделю.

Под особым запретом алкогольные напитки. В исключительных случаях, можно только 30 г водки. Особенно противопоказано пиво и красное вино.

Отдавайте предпочтение щелочной минеральной воде.

Употребление соли нужно свести к минимуму. В идеале лучше вообще от нее отказаться.

Необходимо следить за частотой приема пищи. Голодание может только усугубить состояние больного и повысить уровень мочевой кислоты. Поэтому количество приемов пищи в день должно быть 5-6 раз. Разгрузочные дни проводить лучше на кисломолочных продуктах и фруктах.

Из меню следует исключить некоторые виды продуктов:

  • Щавель;
  • Салат;
  • Помидоры;
  • Виноград;
  • Шоколад;
  • Яйца;
  • Кофе;
  • Торты;
  • Репа;
  • Баклажан.

Снижению уровня мочевой кислоты способствуют яблоки, картофель, сливы, груши, абрикосы. Следует следить и за водным балансом – 2,5 л жидкости в день должно быть выпито.

Лечить высокий уровень кислоты в крови можно и при помощи физиотерапевтических процедур. Так плазмаферез поможет очистить кровь от избытка солей. Не стоит пренебрегать и лечебной гимнастикой. Ряд несложных упражнений (махи ногами, «велосипед», ходьба на месте и др.) поможет в стабилизации метаболизма. Массаж также способствует расщеплению соли мочевой кислоты.

Из лекарственных препаратов прописываются комплексы, обладающие противовоспалительными, мочегонными и обезболивающими свойствами. Выделяют 3 типа препаратов от гиперурикемии:

  1. Действие, которых направлено на выведение избытков мочевой кислоты: «Пробенецид», аспирин, гидрокарбонат натрия, аллопуринол.
  2. Способствующие снижению выработки кислоты. Их назначают пациентам, перенесшим мочекаменное заболевание и тем, у кого диагностирована почечная недостаточность;
  3. Помогающие перевести мочевую кислоту из ткани в кровь, и способствующие ее выведению: «Цинховен».

Курс лечения предусматривает диагностику и устранение сопутствующих заболеваний и факторов их вызвавших. Тем самым устраняя причины, вызвавшие повышение уровня мочевой кислоты в крови. Если мочевая кислота в крови повышена, то это негативно сказывается на состоянии человека. На тканях и органах оседает соляной осадок. Лечения подобного отклонения разностороннее: диета, физиотерапия, медикаменты и народная медицина. Все эти методики в комплексе могут помочь нормализовать уровень кислоты.