Ультразвуковое обследование: описание процедуры и виды. УЗИ (ультразвуковое исследование)

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается . Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей , а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики . В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера . Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения , которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики

Генератор ультразвуковых волн

Генератором ультразвуковых волн является передатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

Методики ультразвукового исследования

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

  • A-режим . Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
  • B-режим . Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
  • M-режим . Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной - время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.

Допплерография

Спектральный Допплер Общей Каротидной Артерии

Методика основана на использовании эффекта Допплера . Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур - если движение направлено в сторону датчика, то частота увеличивается, если от датчика - уменьшается.

Потоковая спектральная допплерография (ПСД)

Предназначена для оценки кровотока в относительно крупных сосудах и камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной - время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси - от датчика. Помимо скорости и направления кровотока, по виду допплеровской спектрограммы можно определить характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный - широкой неоднородной кривой.

Непрерывная (постоянноволновая) ПСД

Методика основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на пути ультразвукового луча в пределах глубины его проникновения. Недостаток: невозможность изолированного анализа потоков в строго определенном месте. Достоинства: допускает измерение больших скоростей потоков крови.

Импульсная ПСД

Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.

Цветовое допплеровское картирование (ЦДК)

Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий - от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки - высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.

Энергетическая допплерография (ЭД)

Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока.

Комбинированные варианты

Применяются также и комбинированные варианты, в частности:

  • ЦДК+ЭД - конвергентная цветовая допплерография
  • B-режим УЗИ + ПСД (или ЭД) - дуплексное исследование

Трёхмерное допплеровское картирование и трёхмерная ЭД

Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения. После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное [неизвестный термин ] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).

Эхоконтрастирование

Методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки газа (диаметром менее 5 мкм при их циркуляции не менее 5 минут). Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью принтера .

В клинической практике методика используется в двух направлениях.

Динамическая эхоконтрастная ангиография

Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

Тканевое эхоконтрастирование

Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

Применение в медицине

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • анальгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см 2 , в области грудного и поясничного отдела - 0,4-0,6 Вт/см 2).

Опасность и побочные эффекты

Ультразвуковое исследование в целом считается безопасным способом получения информации.

Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА -принципу.

Отчёт 875 Всемирной организации здравоохранения за 1998 г. поддерживает мнение, что ультразвук безвреден: «Диагностическое ультразвуковое исследование плода признаётся безопасным, эффективным и в высокой степени гибким способом получением изображения, позволяющим выявить клинически существенную информацию о большинстве частей тела быстрым и рентабельным способом». Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

Эхоэнцефалография

Основная статья: Эхоэнцефалография

Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

Офтальмология

Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

Внутренние болезни

Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

  • брюшная полость и забрюшинное пространство
  • органы малого таза

Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д.

В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

Печень

Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

Жёлчный пузырь и желчные протоки

Кроме самой печени оценивается состояние желчного пузыря и желчных протоков - исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

Поджелудочная железа

При исследовании поджелудочной железы оцениваются её размеры, форма, контуры, однородность паренхимы, наличие образований. Качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов.

Почки и надпочечники , забрюшинное пространство

Исследование забрюшинного пространства, почек и надпочечников является достаточно трудным для врача ввиду особенностей их расположения, сложности строения и многогранности и неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их количество, расположение, размер, форма, контуры, структура паренхимы и чашечно-лоханочной системы. УЗИ позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

Щитовидная железа

В исследовании щитовидной железы ультразвуковое исследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы.

Кардиология, сосудистая и кардиохирургия

Эхокардиография (ЭхоКГ) - это ультразвуковая диагностика заболеваний сердца. В этом исследовании оцениваются размеры сердца и его отдельных структур (желудочки, предсердия, межжелудочковая перегородка, толщина миокарда желудочков, предсердий и т. д.), наличие и объём жидкости в перикарде - «сердечной сорочке», состояние клапанов сердца. С помощью специальных расчетов и измерений Эхокардиография позволяет определить массу сердца, сократительную способность сердца - фракцию выброса и т. д. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

Акушерство, гинекология и пренатальная диагностика

Ультразвуковое исследование используется для изучения внутренних половых органов женщины, состояния беременной матки, анатомии и мониторинга внутриутробного развития плода.

Трёхмерное ультразвуковое исследование 29-недельного плода.

Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки, легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через неё крови, а через 9 - 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвукового исследования можно также определять количество зародышей или констатировать смерть плода.

Аппарат ультразвуковой диагностики

Аппарат ультразвуковой диагностики (УЗИ сканер) - прибор, предназначенный для получения информации о расположении, форме и структуре органов и тканей и измерения линейных размеров биологических объектов методом ультразвуковой локации.

Классификация аппаратов УЗИ

В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

  • ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);
  • ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца);
  • ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);
  • ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

  • С - статические;
  • Д - динамические;
  • К - комбинированные.

Термины, понятия, сокращения

  • Advanced 3D - расширенная программа трёхмерной реконструкции.
  • ATO - автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.
  • B-Flow - визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.
  • Coded Contrast Imaging Option - режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.
  • CodeScan - технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путем создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.
  • Color doppler (CFM или CFA) - цветовой допплер (Color Doppler) - выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика - синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии - цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
  • DICOM - возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.
  • Easy 3D - режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.
  • M-mode (M-режим) - одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.
  • MPEGvue - быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.
  • Power doppler - энергетический допплер - качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток - отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
  • Smart Stress - расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.
  • Tissue Harmonic Imaging (THI) - технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) - специализированный инструмент для диагностики и оценки сердечных дисфункций.
  • Tissue Velocity Imaging" - тканевой допплер (Tissue Velocity Imaging или тканевая цветовая допплерография) - цветовое картирование движения тканей, применяется совместно с импульсным допплером в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.
  • TruAccess - подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.
  • TruSpeed - уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.
  • Virtual Convex - расширенное конвексное изображение при использовании линейных и секторных датчиков.
  • VScan - визуализация и квантификация движения миокарда.
  • Импульсный допплер (PW, HFPW) - импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) - ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW - high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.
  • Постоянно-волновой допплер - постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести расчеты давления в полостях сердца и магистральных сосудах в ту или иную фазу сердечного цикла, рассчитать степень значимости стеноза и т. д. Основным уравнением CW является уравнение Бернулли, позволяющее рассчитать разницу давления или градиент давления. С помощью уравнения можно измерить разницу давления между камерами в норме и при наличии патологического, высокоскоростного кровотока.

Ультразвуковое исследование - это исследование органов и тканей с помощью ультразвуковых "волн". Проходя через ткани различной плотности, а точнее через границы между различными тканями, ультразвук по-разному отражается от них. Специальный принимающий датчик фиксирует эти изменения, переводя их в графическое изображение, которое может быть зафиксировано на мониторе или специальной фотобумаге.

Ультразвуковой метод прост и доступен, не имеет противопоказаний. УЗИ можно применять неоднократно в течение всего периода наблюдения за пациентом в течение нескольких месяцев или лет. Более того, исследование можно повторять несколько раз в течение одного дня, если этого требует клиническая ситуация.

Иногда исследование трудновыполнимо или малоинформативно из-за наличия у пациента послеоперационных рубцов, повязок, ожирения, выраженного метеоризма. В этих и других случаях в нашем отделе может быть выполнена компьютерная томография (КТ) или магнитно-резонансная томография (МРТ). В том числе когда патологические процессы, выявленные при УЗИ, требуют дообследования с помощью более информативных методик уточняющей диагностики.

История метода УЗИ

Ультразвук в природе открыл итальянский ученый Ладзарро Спалланцани в 1794 г. Он заметил, что если летучей мыши заткнуть уши, она теряет ориентировку. Ученый предположил, что ориентация в пространстве осуществляется посредством излучаемых и воспринимаемых невидимых лучей. В дальнейшем они получили название ультразвуковых волн.

В 1942 году немецкий врач Теодор Дуссик и его брат физик Фридрих Дуссик попытались использовать ультразвук для диагностики опухоли мозга у человека.

Первый медицинский ультразвуковой прибор был создан в 1949 г. американским ученым Дугласом Хаури.

Особо следует отметить вклад в развитие ультразвуковой диагностики Христиана Андерса Допплера, который в своем трактате "О коллометрической характеристике изучения двойных звезд и некоторых других звезд неба" предположил о существовании важного физического эффекта, когда частота принимаемых волн зависит от того, с какой скоростью движется излучающий объект относительно наблюдателя. Это стало основой допплерографии - методики изменения скорости кровотока с помощью ультразвукового исследования.

Возможности и преимущества метода УЗИ

УЗИ - широко распространенный метод диагностики. Он не подвергает пациента лучевой нагрузке и считается безвредным. Тем не менее, у ультразвукового исследования есть ряд ограничений. Метод не является стандартизованным, и качество исследования зависит от оборудования, на котором проводится исследование, и квалификации врача. Дополнительное ограничение для УЗИ - это излишний вес и/или метеоризм, что мешает проведению ультразвуковых волн.

Ультразвуковое исследование является стандартным методом диагностики, который применяется для скрининга. В таких ситуациях, когда заболевания и жалоб у пациента еще нет, для ранней доклинической диагностики следует применять именно УЗИ. При наличии уже известной патологии лучше выбрать КТ или МРТ как методы уточняющей диагностики.

Области применения ультразвука в медицине чрезвычайно широки. В диагностических целях его используют для выявления заболеваний органов брюшной полости и почек, органов малого таза, щитовидной железы, молочных желез, сердца, сосудов, в акушерской и педиатрической практике. Также УЗИ применяется как метод диагностики неотложных состояний, требующих хирургического вмешательства, таких как острый холецистит, острый панкреатит, тромбоз сосудов и др.

УЗИ является преимущественным методом диагностики при обследовании во время беременности, т.к. рентгеновские методы исследования могут нанести вред плоду.

Противопоказания к УЗИ

Противопоказаний к ультразвуковому исследованию нет. УЗИ является методом выбора для диагностики патологических состояний во время беременности. УЗИ не обладает лучевой нагрузкой, его можно повторять неограниченное количество раз.

Подготовка

Исследование органов брюшной полости проводится натощак (предыдущий прием пищи не ранее чем за 6-8 часов до исследования), утром. Из рациона на 1-2 дня следует исключить бобовые, сырые овощи, черный хлеб, молоко. При наклонности к газообразованию рекомендован прием активированного угля по 1 таблетке 3 раза в день, других энтеросорбентов, фестала. При наличии у пациента сахарного диабета допустим легкий завтрак (теплый чай, подсушенный белый хлеб).

Для выполнения трансабдоминального исследования органов малого таза (мочевого пузыря, матки или предстательной железы) требуется наполнение мочевого пузыря. Рекомендуется воздержание от мочеиспускания в течение 3-х часов до исследования или прием 300-500 мл воды за 1 час до исследования. При проведении внутриполостного исследования (через влагалище у женщин - ТВУЗИ, или через прямую кишку у мужчин - ТРУЗИ), наоборот, необходимо опорожнить мочевой пузырь.

Ультразвуковые исследования сердца, сосудов, щитовидной железы не требуют специальной подготовки.

Как проходит обследование

Врач или медсестра пригласят Вас в кабинет ультразвуковой диагностики, и предложит Вам лечь на кушетку, обнажив исследуемую часть тела. Для наилучшего проведения ультразвуковых волн врач нанесет на кожу специальный гель, который не содержит никаких лекарственных средств и является абсолютно нейтральным для организма.

Во время исследования врач будет прижимать к телу в разных положениях ультразвуковой датчик. Изображения будут отображаться на мониторе и печататься на специальную термобумагу.

При исследовании сосудов будет включена функция определения скорости кровотока с помощью режима допплеровского исследования. В этом случае исследование будет сопровождать характерный звук, отражающий движение крови по сосуду.

В настоящее время в клинической практике применяют эхографический метод, основанный на регистрации волн, отраженных от границ раздела сред с различным акустическим сопротивлением, и метод, основанный на эффекте Допплера, т.е. регистрации изменения частоты ультразвуковой волны, отраженной от движущихся границ между средами. Последняя методика позволяет получить информацию о гемодинамике органов и систем и применяется в основном для исследования сердца и сосудов.

При исследовании органов мочеполовой системы используется главным образом эхографический метод регистрации ультразвука, который по характеру воспроизведения разделяется на:

1) одномерную эхографию (А-метод), который позволяет получить информацию об объекте лишь в одном направлении (одном измерении) и, таким образом, не дает полного представления о форме и величине исследуемого объекта;
2) двухмерную эхографию (ультразвуковое сканирование, В-метод), который в отличие от одномерной позволяет получить двухмерное плоскостное изображение объекта в виде эхотомографического среза (скан);
3) УЗИ в режиме «М» (motion - движение), при котором движение отраженных ультразвуковых волн разворачивается во времени, что дает ложное двухмерное изображение, когда по горизонтали регистрируется истинный размер органа по пути распространения ультразвуковой волны, а по вертикали — время. Скорость развертки во времени и масштаб изображения на экране меняются произвольно.

Количество и качество отраженных волн обусловлено физическими процессами, протекающими при прохождении ультразвука через среду. Чем больше разница в акустическом сопротивлении сред, тем больше ультразвуковых волн отражается на границе их раздела. Поскольку акустическое сопротивление среды является функцией плотности среды, количество и качество отраженных ультразвуковых волн объективно передают детали строения внутренних органов и тканей в зависимости от их плотности.

С одной стороны, ввиду чрезвычайно большой разности в акустическом сопротивлении тканей и воздуха на границе раздела этих сред ультразвук практически весь отражается обратно, и поэтому получить информацию о тканях, лежащих за прослойкой воздуха, часто не представляется возможным. С другой стороны, наилучшие условия распространения ультразвука создают жидкости любого химического состава, и образования, наполненные жидкостью, визуализируются особенно легко.

При проведении УЗИ необходимо помнить о реверберации — появлении добавочного изображения на расстоянии, вдвое больше от истинного. В основе этого феномена лежит повторное отражение части воспринимаемых волн от поверхности датчика иди от границы полого органа, в результате чего ультразвуковая волна повторно совершает свой путь, что вызывает мнимое отражение. Недооценка этого феномена может привести к серьезным диагностическим ошибкам.

Частота ультразвука, применяемого с диагностической целью, находится в пределах 0,8—7 МГц, причем существует следующая закономерность: чем выше частота ультразвука, тем больше разрешающая способность; усиливается поглощение ультразвука тканями и соответственно падает проникающая способность. С уменьшением частоты ультразвука наблюдается обратная закономерность, поэтому для исследования близко расположенных объектов применяют более высокочастотные датчики (5—7 МГц), а для глубоко расположенных и больших по размерам органов приходится использовать низкочастотные датчики (2,5—3,5 МГц).

УЗИ проводят в затемненной комнате, так как при ярком освещении глаз человека не воспринимает серые тона на телевизионном экране. В зависимости от задач исследования выбирается тот или иной режим работы прибора. Для исключения прослойки воздуха между датчиком и телом больного кожу в области исследования покрывают иммерсионной средой.

Справка: Ультразвуковые волны – это звуковые волны с частотой свыше 20 килогерц. При помощи ультразвука ориентируются в пространстве летучие мыши и дельфины. Ультразвук нашел свое применение и во многих отраслях жизни человека: для анализа структуры металла и эхолокации морского дна, на воздушном транспорте и в рыболовстве, в ежедневной практике инспектора ГИБДД и т.д.. С 1956 г. ультразвуковые волны стали применяться для определения различных заболеваний.

Узи - это...

Ультразвуковое исследование (УЗИ) - это исследование состояния органов и тканей с помощью ультразвуковых волн. Ультразвуковое исследование основано на способности ультразвука отражаться от внутренних органов и тканей различной плотности, что проявляется в виде изображения на экране сканера. Этим методом осматривают те органы, которые не содержат воздуха.

Ультразвуковое исследование является одним из самых распространенных методов диагностики благодаря своей безопасности. Ультразвук, применяющийся в аппаратуре, совершенно безвреден. Он не вызывает никаких побочных явлений и тем более повреждений. Ультразвуковое исследование гораздо безопаснее рентгеновского и во многих случаях позволяет наиболее точно диагностировать заболевание.

Преимущества узи

Метод УЗИ имеет ряд преимуществ перед другими аналогичными методами. Это:

Безопасность и безболезненность

Многофункциональность

(с помощью ультразвуковых волн можно посмотреть почти все внутренние органы во время одного посещения врача).

Быстрота

(Вы получите ультразвуковое заключение через 5-10 минут после окончания обследования).

Как проходит ультразвуковое исследование

Все ультразвуковые исследования проводятся, как правило, когда пациент лежит на кушетке. На кожу исследуемого врач наносит прозрачный гель для создания наиболее близкого контакта, так как воздух не проводит ультразвук и гасит его еще до проникновения лучей в ткани пациента, что резко ухудшает изображение органов. После нанесения геля врач специальным датчиком, излучающим ультразвуковые волны и принимающим отраженные волны, проводит УЗИ.

Виды УЗИ. Их цели. Подготовка.

Ниже перечислены виды ультразвуковых исследований, цели их применения и подготовка в ним:

1. УЗИ органов брюшной полости (печени, желчного пузыря, поджелудочной железа, селезенки)

Производится для оценки размеров и структуры этих органов, позволяет выявить врожденные аномалии развития, диффузную и очаговую патологию паренхиматозных органов (печень, поджелудочная железа, селезенка), оценить состояние стенок желчного пузыря (наличие воспалительных изменений, изменений, связанных с нарушением обмена веществ, выявить наличие объемных образований (полипов и злокачественных образований), оценить состояние полости желчного пузыря (наличие конкрементов и т.п.), состояние желчевыводящих путей, сосудов брюшной полости и забрюшинных лимфоузлов, моторную функцию желчного пузыря, косвенно сделать вывод о заболеваниях желудка и кишечника.

Подготовка к УЗИ органов брюшной полости: перед осмотром органов брюшной полости нужно воздержаться от приема пищи, всякой жидкости, никотина, а также не жевать жевательную резинку за 6-8 часов до исследования. В идеале следует проводить это УЗИ строго натощак утром.

2. УЗИ мочевыводящей системы (почек, мочеточников, мочевого пузыря)

Позволяет оценить размеры органов, структуру паренхимы почек, состояние чашечно-лоханочной (выводящей мочу) системы почек, состояние стенок и полости мочевого пузыря, выявить диффузную и очаговую патологию почек, наличие конкрементов (камней) во всех отделах мочевыводящей системы и врожденных аномалий развития.

В качестве подготовки перед УЗИ мочевыводящей системыследует выпить 600-700 мл любой жидкости(негазированной) за 1 час до УЗИ и не мочиться в течение 1 часа. Кушать и пить можно.

3. УЗИ половой системы у женщин

Позволяет оценить размеры и структуру матки, маточных труб и яичников, выявить врожденные аномалии развития, кисты, очаговые, узловые и диффузные формы заболеваний, выявить гормональные нарушения, пронаблюдать процесс созревания и выделения яйцеклетки (фолликулогенез), сделать вывод о причинах бесплодия, диагностировать беременность в раннем сроке, а также патологию беременности, оценить развитие плода.

Взрослым женщинам УЗИ органов малого таза проводится как трансабдоминально (через живот), так и трансвагинально (внутриполостным датчиком через влагалище). Сочетание этих двух способов обследования позволяет дать максимально точную информацию о состоянии органов малого таза и не требует подготовки.

Подготовки для УЗИ органов малого таза у женщин не требуется.

4. УЗИ половой системы у мужчин

Производится для оценки размеров и структуры органов, выявления заболеваний воспалительной природы, их осложнений (кисты, конкременты, нарушения оттока мочи и т.д.) и объемных образований (аденом и злокачественных образований).

Для осмотра предстательной железы применяются два способа обследования - через живот (трансабдоминальный) и через прямую кишку (трансректальное УЗИ – ТРУЗИ).

Для подготовки к трансабдоминальному УЗИ (через живот) нужно накопить мочевой пузырь, т.е. за 1 час до УЗИ выпить примерно 600-700 мл негазированной жидкости и не мочиться в течение 1 часа. Перед трансректальным УЗИ (ТРУЗИ) нужно сделать две очистительные клизмы: вечером накануне обследований и утром перед обследованием), наполнять мочевой пузырь не нужно. Кушать можно перед обоими видами обследования.

5. Акушерское УЗИ (УЗИ плода)

Производится в сроке 10-14 недель, 20-24 недели и 30-34 недели. Цель обследования – это оценка правильности развития плода, исключение врожденных пороков развития.

Подготовки к этому исследованию не требуется.

6. УЗИ щитовидной железы

Позволяет оценить размеры и структуру железы, выявить диффузную, очаговую и узловую патологию щитовидной железы. Учитывая то, что наш регион является эндемичным по дефициту йода в воде, воздухе и пище, патологии щитовидной железы у нас много. Щитовидная железа управляет уровнем обмена веществ, поэтому является очень важным органом и требует внимания.

Подготовки для УЗИ щитовидной железы не требуется.

7. УЗИ молочных желез

Позволяет диагностировать предрасположенность к серьезным заболеваниям молочных желез (дисгормональные изменения), а также сами эти заболевания (мастопатии, кисты и объемные образования доброкачественные и злокачественные). В осмотр молочных желез входит осмотр подмышечных лимфоузлов.

Подготовки для УЗИ молочных желез не требуется.

8. УЗИ слюнных желез

Производится для оценки размеров и структуры их для диагностики воспалительных, диффузных и очаговых поражений этих органов, которые встречаются нередко.

Подготовки для УЗИ слюнных желез не требуется.

9. УЗИ периферических лимфоузлов

Производится для верификации того, что пальпируемое подкожное образование – это лимфоузлы, а также для дифференциации воспалительных и метастатических лимфоузлов, хотя наиболее точный метод дифференциации – это пункционная биопсия пальпируемых образований.

Подготовки для УЗИ периферических лимфоузлов не требуется.

10. УЗИ подкожных образований

Часто люди находят у себя под кожей уплотнения или образования и не знают, куда им обратиться и что делать. Они приходят на УЗИ, и мы выясняем природу образования.

Подготовки для УЗИ подкожных образований не требуется.

11. УЗИ послеоперационных швов

В случаях длительного незаживления послеоперационных швов УЗИ играет решающую роль для диагностики причины этого состояния.

Для этого вида УЗИ подготовки не требуется.

12. УЗИ суставов

Позволяет установить причину болей в области сустава. Дело в том, что болит не всегда сам сустав, а болят окружающие мягкие ткани. УЗИ позволяет оценить состояние мягких тканей суставов и контуры костей, образующих сустав. Рентгеновское исследование определяет состояние костных структур сустава, а УЗИ состояние хрящей, суставных поверхностей, синовиальной оболочки сустава, связок и менисков, наличие жидкости в полости сустава и окружающих его сумках, то есть УЗИ позволяет оценить воспалительные, травматические, дегенеративные и деструктивные изменения в суставах и окружающих суставы мягких тканей.

Подготовки для УЗИ суставов не требуется.

13. Для детей: УЗИ головного мозга (нейросонография)

Проводится для оценки правильности развития мозговых структур детей, наличия внутричерепной гипертензии, последствий родовых травм.

14. УЗИ тазобедренных суставов

Проводится для оценки правильности развития тазобедренного сустава. Для этих исследований подготовки также не требуется.

Методы УЗИ

Существует несколько видов ультразвуковых исследований, среди которых наиболее часто используется сканирование (то, что традиционно принято называть УЗИ). В последнее время с нему добавилась допплерография. В основу допплерографии положен эффект Доплера (это изменение длины волны, отраженной от движущихся предметов). Этот эффект позволяет изучать кровоток и состояние проходимости кровеносных сосудов.

В последние годы широко используются внутриполостные исследования как методика исследования ультразвуковыми волнами. Для них разработаны специальные датчики. Также проводятся гинекологические трансвагинальные и урологические трансректальные исследования. Это способы диагностики являются наиболее точными и современными и позволяют получить информацию практически о каждом миллиметре тканей половых женских внутренних половых органов и предстательной железы у мужчин, поэтому в современной медицине они рекомендуются к широкому использованию. При проведении внутриполостных исследований большое внимание уделяется их стерильности, для чего используются специальные насадки на ультразвуковые датчики и технологии обработки датчиков. Внутриполостные исследования являются также безболезненными и не доставляют каких либо значительных неудобств для пациента, хотя подготовка к этим обследованиям имеет серьезное значение.

Ультразвуковая диагностика – это быстрый, безболезненный и безопасный метод получения достоверной информации о Вашем здоровье. УЗИ помогает поставить точный диагноз в кратчайшие сроки и контролировать эффективность лечения.

Ультразвуковое исследование (УЗИ) – диагностическая методика, основанная на визуализации структур организма с помощью ультразвуковых волн. При этом не нужно нарушать целостность кожи, вводить лишние химические вещества, терпеть боль и дискомфорт, что делает такой метод, как УЗИ, одним из самых распространенных в медицинской практике.

УЗИ или сонография – это такое исследование, которое основано на способности ультразвука по-разному отражаться от объектов с неодинаковой плотностью. Колебания ультразвуковой волны, генерируемой датчиком, передаются на ткани организма и таким образом распространяются на более глубокие структуры. В однородной среде волна распространяется только по прямой. При возникновении на ее пути преграды с иным сопротивлением волна частично отражается от нее и возвращается обратно, улавливаясь датчиком. От воздушных сред ультразвук отражается практически полностью, именно поэтому этот метод бесполезен при диагностике болезней легких. По этой же причине во время проведения УЗ-исследования необходимо наносить на кожу инертный гель. Этот гель убирает воздушный слой между кожей и сканером и улучшает параметры визуализации.

Виды датчиков и режимы сканирования

Основная особенность ультразвукового датчика – это его способность одновременно генерировать и улавливать ультразвук. В зависимости от методики, цели и техники проведения исследования в функциональной диагностике применяют следующие типы датчиков:

  • Линейные, которые обеспечивают высокую четкость изображений, но небольшую глубину сканирования. Этот вид датчиков применяется для УЗИ более поверхностных структур: щитовидной, молочной железы, сосудов, объемных образований в подкожной жировой клетчатке.
  • Секторные датчики применяют, когда необходимо проведение УЗИ глубинных структур из небольшой доступной площади: обычно это сканирование через межреберные промежутки.
  • Конвексные датчики характеризуются значительной глубиной визуализации (около 25 см). Этот вариант широко используется в диагностике заболеваний тазобедренных суставов, органов брюшной полости, малого таза.

В зависимости от применяемых методик и исследуемой зоны датчики бывают следующих форм:

  • трансабдоминальные – датчики, которые устанавливаются непосредственно на кожу;
  • трансректальные – вводятся в прямую кишку;
  • трансвагинальные – во влагалище;
  • трансвезикальные – в мочеиспускательный канал.

Особенности визуализации отраженных УЗ-волн зависят от выбранного варианта сканирования. Выделяют 7 основных режимов работы аппаратов УЗИ:

  • A-режим показывает одномерную амплитуду колебаний: чем выше амплитуда, тем выше коэффициент отражения. Этот режим применяется только при проведении эхоэнцефалографии (УЗИ головного мозга) и в офтальмологической практике для оценки состояния оболочек и структур глазного яблока.
  • M-режим подобен режиму A, но он показывает результат по двум осям: по вертикальной – расстояние до исследуемой области, по горизонтальной – время. Этот режим позволяет провести оценку скорости и амплитуды движения сердечной мышцы.
  • B-режим дает двухмерные изображения, на которых разные оттенки серого цвета соответствуют определенной степени отражения эхо-сигнала. С увеличением интенсивности эха изображение становится более светлым (гиперэхогенная структура). Жидкостные образования анэхогенны и визуализируются в черном цвете.
  • D-режим есть не что иное, как спектральная доплерография. В основе этого метода лежит эффект Доплера – вариабельность частоты отражения УЗ-волны от движущихся объектов. При перемещении в направлении сканера частота усиливается, в обратном направлении – уменьшается. Этот режим применяется при исследовании кровотока по сосудам, за ориентир берется частота отражения волны от эритроцитов.
  • СDК-режим, то есть цветовое доплеровское картирование, кодирует определенным оттенком разнонаправленные потоки. Поток, идущий по направлению к датчику, изображается красным цветом, в противоположную сторону – синим.
  • 3D-режим позволяет получить трехмерное изображение. Современные аппараты фиксируют в памяти сразу несколько изображений и на их основании воспроизводят трехмерную картинку. Этот вариант чаще используется при УЗИ плода, а в сочетании с доплеровским картированием – при УЗИ сердца.
  • 4D-режим дает возможность увидеть движущееся объемное изображение в режиме реального времени. Применяют этот метод также в кардиологии и акушерстве.

Плюсы и минусы

К плюсам УЗИ-диагностики относятся:

  • безболезненность;
  • отсутствие травматизации тканей;
  • доступность;
  • безопасность;
  • отсутствие абсолютных противопоказаний;
  • возможность переноски аппарата УЗИ, что важно для лежачих больных;
  • невысокая стоимость;
  • высокая информативность – процедура позволяет оценить размеры и структуру органов и своевременно выявить болезнь.

Тем не менее, УЗИ не лишено недостатков:

  • высокая операторо- и аппаратозависимость – интерпретация эхогенной картины в достаточной степени субъективна и зависит от квалификации врача и разрешающей способности аппарата;
  • отсутствие системы стандартизованной архивации – пересмотреть результаты УЗИ спустя определенное время после исследования невозможно; даже если остаются сохраненные файлы, не всегда понятно, в каком случае куда был смещен датчик, а это затрудняет интерпретацию результатов;
  • недостаточная информативность статичных изображений и снимков, переносимых на пленку.

Области применения

В настоящее время УЗИ является самым распространенным диагностическим методом в медицине. При подозрении на заболевание внутренних органов, сосудов, суставов практически всегда в первую очередь назначают именно этот вариант обследования.

Также значимо применение УЗИ при беременности для определения ее точного срока, особенностей развития плода, количества и качества околоплодных вод, для оценки состояния женской репродуктивной системы.

УЗИ используют в качестве:

  • планового обследования;
  • экстренной диагностики;
  • наблюдения в динамике;
  • диагностики во время и после операции;
  • контрольного метода при выполнении инвазивных процедур (пункция, биопсия);
  • скрининга – профилактического обследования, необходимого для раннего выявления болезни.

Показания и противопоказания

Показанием для проведения УЗ-диагностики служит подозрение на следующие изменения в органах и тканях:

  • воспалительный процесс;
  • новообразования (опухоли, кисты);
  • наличие камней и кальцинатов;
  • смещение органа;
  • травматические повреждения;
  • нарушение функции органа.

Раннее выявление аномалий развития плода – главное, зачем делают УЗИ при беременности.

УЗИ назначают для обследования следующих органов и систем:

  • пищеварительная система (поджелудочная железа, паренхима печени, желчевыводящие пути);
  • мочеполовая система (патологии половых органов, почек, мочевого пузыря, мочеточников);
  • головной мозг;
  • глазное яблоко;
  • железы внутренней секреции (щитовидная железа, надпочечники);
  • костно-мышечный аппарат (суставы, позвоночник);
  • сердечно-сосудистая система (при нарушении работы сердечной мышцы и заболеваниях сосудов).

Основное значение УЗИ для медицины заключается в раннем выявлении патологии и, соответственно, в своевременном лечении болезни.

Абсолютных противопоказаний к проведению УЗИ нет. Относительным противопоказанием можно считать кожные заболевания и повреждения в области, куда нужно ставить датчик. Решение о том, можно ли назначать этот метод, принимается в каждой ситуации индивидуально.

Подготовка и ход УЗ-исследования

Специальная подготовка необходима только при отдельных вариантах УЗ-диагностики:

  • При трансабдоминальном УЗИ органов малого таза очень важно предварительно наполнить мочевой пузырь, выпив большой объем жидкости.
  • Непосредственно перед проведением трансректального УЗИ простаты железы делают клизму.
  • Исследование органов брюшной полости и малого таза проводится натощак. За день до него ограничивают употребление продуктов, вызывающих метеоризм. В некоторых случаях, по рекомендации врача, принимают специальные препараты, регулирующие газообразование: эспумизан, мезим, креон. УЗИ Проведение процедуры и расшифровка результатов

Как именно делают УЗИ, зависит от исследуемой области и техники проведения. Обычно обследование проводится лежа. УЗИ почек проводят в положении на боку, а затем стоя для оценки их смещаемости. На кожу наносится инертный гель, по которому скользит датчик. Врач перемещает этот датчик не хаотично, а в строгом порядке, чтобы рассмотреть орган под различными углами.

УЗИ простаты проводится с использованием специального датчика трансректально (через прямую кишку). УЗИ мочевого пузыря может выполняться через мочеиспускательный канал – трансвезикально, сонография органов малого таза – с помощью влагалищного датчика. Возможно также и трансабдоминальное УЗИ женских половых органов, но оно обязательно проводится с наполненным мочевым пузырем.

Структура органа визуализируется на экране монитора в черно-белом варианте, кровоток – в цветном. Результаты заносятся в специальную форму в письменном либо печатном виде. Обычно результат отдают на руки сразу после завершения процедуры, но это зависит от того, как быстро расшифровывается УЗИ.

При проведении УЗИ расшифровка результатов проводится по следующим показателям:

  1. Размеры и объем органа. Увеличение или уменьшение обычно является признаком патологии.
  2. Структура ткани органа: наличие уплотнений, кист, полостей, кальцинатов. Неоднородная структура может быть признаком воспалительного процесса.
  3. Форма органа. Ее изменение может быть признаком воспаления, наличия объемного образования, травматического повреждения.
  4. Контуры. В норме визуализируются ровные и четкие контуры органа. Бугристость указывает на наличие объемного образования, размытость контура – на воспалительный процесс.
  5. Эхогенность. Поскольку УЗ-методика основана на принципе эхолокации, то это важный оценочный критерий. Гипоэхогенные участки являются признаком скопления жидкости в тканях, гиперэхогенные – плотных включений (кальцинаты, камни).
  6. Функциональные показатели работы органа: скорость кровотока, сердечные сокращения.

Иногда назначают повторное УЗИ, чтобы оценить изображение в динамике и получить более полную информацию о течении заболевания.

Ультразвуковое исследование является первым «рубежом обороны» на пути многих заболеваний благодаря доступности и информативности. В ситуациях, когда нужно оценить не только структуру, но и функцию органа, УЗИ даже более предпочтительно, чем МРТ или МСКТ. И конечно, не стоит пренебрегать профилактическими УЗ-обследованиями, которые помогут выявить заболевание на ранней стадии и вовремя начать лечение.