Биомикроскопия хрусталика. Биомикроскопия глаза: что это такое, когда проводят. Как проводится биомикроскопия глаза

Глаза - самый важный орган чувств. С его помощью человек воспринимает 70% приходящей извне информации. Дело касается не просто формирования изображений, а и адаптации к местности, снижения риска травм, устройство социальной жизни.

Поэтому, когда из-за травмы, возрастных изменений или общих заболеваний поражаются глаза, вопрос стоит об инвалидности и заметном снижении качества жизни. Именно с целью ранней и точной диагностики заболеваний органа зрения в офтальмологии существует быстрый и информативный метод биомикроскопии.

В чем заключается метод биомикроскопии

Биомикроскопия - микроскопическое исследование структур зрительного органа in vivo (в живом организме) с помощью щелевой лампы (биомикроскопа).

Щелевая лампа - оптический прибор, состоящий из:

  • Бинокулярного (для двух глаз) микроскопа - аппарат для получения изображения, увеличенного до 60 раз.
  • Источника света: галогенная или светодиодная лампы мощностью 25Вт.
  • Щелевая диафрагма - для создания тонких вертикальных или горизонтальных пучков света.
  • Подставки для лица пациента (опора под подбородок и лоб).
  • Асферическая линза Груда - для проведения биомикроофтальмоскопии (осмотр глазного дна с помощью щелевой лампы).

Способ получения изображения основан на оптическом эффекте Тиндаля. Через оптически неоднородную среду (роговица - хрусталик - стекловидное тело) пропускается тонкий пучок света. Рассматривание проводится перпендикулярно направлению лучей. Полученное изображение представляется в виде тонкой мутной световой полоски, анализ которой и есть заключением биомикроскопии.

Виды биомикроскопии

Исследование глаз с помощью щелевой лампы - стандартная методика, однако для изучения отдельных структур глаза существуют разные методы освещения биомикроскопа, описано ниже.

  • Диффузное освещение. Чаще всего этот способ используется в качестве начального этапа исследования. С его помощью при небольшом увеличении проводится общий осмотр структур глаза.
  • Прямое фокальное освещение. Самый используемый метод, поскольку предоставляет возможность осмотреть все поверхностные структуры глаза: роговицу, радужную оболочку, хрусталик. При прямом направлении пучка света сначала освещают более широкую область, затем сужают отверстие диафрагмы - для более подробного изучения. Метод полезен для ранней диагностики кератита (воспалительного процесса в роговице) и катаракты (помутнения хрусталика).
  • Непрямое фокальное освещение (исследование в темном поле). Внимание врача обращено к участкам, расположенным рядом с освещаемой зоной. В таких условиях хорошо визуализируются опустевшие сосуды, складки десцеметовой оболочки и небольшие преципитаты (осадочные комплексы). Кроме того, метод используется для дифференциальной диагностики новообразований радужной оболочки.
  • Переменное (осцилляторное) освещение - способ, объединивший предыдущих два метода. При быстрой смене яркого света и темноты изучается реакция зрачка, а также - мелкие инородные тела, которые в таких условиях дают характерный блеск.
  • Метод зеркального поля: проводится исследование отсвечивающих зон. Технически этот способ считается самым трудным, однако его применение дает возможность выявить мельчайшие изменения поверхности структур глаза.
  • Проходящее (отраженное) освещение. Изучение элементов производится через пучок света, отраженный от другой структуры (например, радужную оболочку в свете, отраженном от хрусталика). Ценность способа заключается в изучении структур, которые недоступны при других освещениях. В отраженном свете видны тонкие рубцы и отек покровов роговицы, истончение пигментных листков радужной оболочки, мелкие кисты под передней и задней капсулами хрусталика.

Важно! При рассматривании структур глаза в отраженном свете, исследуемые участки приобретают цвет структур, от которых пришел световой луч. Например, при отражении света от голубой радужки, исследуемый хрусталик приобретает серо-голубой цвет

В связи с широким применением ультразвуковых методов диагностики появился новый вариант исследования - ультразвуковая биомикроскопия. С ее помощью можно выявить патологические изменения в боковых отделах хрусталика, на задней поверхности радужной оболочки и в цилиарном теле.

Показания к проведению исследования

С учетом возможностей метода и широкого поля обозрения перечень показаний к проведению биомикроскопии довольно большой:

  • Конъюнктивит (воспаление конъюнктивы).
  • Патологии роговицы: эрозии, кератиты (воспаление роговицы).
  • Инородное тело.
  • Катаракта (помутнение хрусталика).
  • Глаукома (состояние, характеризирующееся повышением внутриглазного давления).
  • Аномалии развития радужной оболочки.
  • Новообразования (кисты и опухоли).
  • Дистрофические изменения хрусталика и роговицы.

Дополнительное использование линзы Груда позволяет диагностировать патологию сетчатки, диска зрительного нерва и сосудов, расположенных на глазном дне.

Противопоказания к биомикроскопии

Абсолютных противопоказаний для диагностической манипуляции нет. Однако биомикроскопию не проводят людям с психическими заболеваниями и пациентам в состоянии наркотического или алкогольного опьянения.

Как проходит исследование

Проведение биомикроскопии не требует предварительной подготовки пациента.

Совет врача! Биомикроскопию детям младше 3-х лет рекомендуется проводить в горизонтальном положении или в состоянии глубокого сна.

Пациента обследуют в темной комнате (для большего контраста освещенных и затемненных участков) офтальмологического кабинета поликлиники или стационара.

Важно! Если планируется осмотр стекловидного тела и структур на глазном дне, непосредственно перед процедурой капают мидриатики (лекарственные средства, расширяющие зрачки).

Для выявления нарушения целостности роговицы используются капли Флуоресцеина

Пациент садится напротив щелевой лампы, размещает подбородок на специальной подставке, а лбом прижимается к перекладине. Рекомендуется не двигаться во время исследования и моргать как можно реже.

Врач с помощью джойстика управления определяет размер щели в диафрагме и направляет пучок света на исследуемый участок. Используя разные методы освещения, осуществляется осмотр всех структур глаза. Длительность процедуры составляет 15 минут.

Возможные осложнения после биомикроскопии

Проведение биомикроскопии не вызывает дискомфорта или болезненных ощущений. Единственным нежелательным последствием может быть аллергическая реакция на используемые препараты.

Важно! Если при исследовании обнаружено стороннее тело, прежде чем его извлекать, применяют глазные капли Лидокаина. Поэтому нужно известить врача о наличии аллергии на препарат

Преимущества метода

Возможность изучать состояние поверхностных и глубоких структур зрительного органа делает биомикроскопию методом выбора для диагностики большинства офтальмологических заболеваний. Для объективной оценки преимуществ этого исследования необходимо сравнение с другими методами диагностики.

Критерий

Биомикроскопия

Офтальмоскопия

Инвазивность исследования

Неинвазивное, безконтактное

Неинвазивное, безконтактное

Длительность процедуры

10-15 минут

Изучаемые структуры

  • Роговица.
  • Хрусталик.
  • Передняя камера.
  • Стекловидное тело.
  • Радужная оболочка.
  • Сетчатка.
  • Диск зрительного нерва
  • Хрусталик.
  • Стекловидное тело.
  • Сосуды глазного дна.
  • Сетчатка.
  • Диск зрительного нерва

Ширина поля исследования

360 градусов

270 градусов

Разрешение изображения

Зависит от зрения офтальмолога и расстояния, с которого проводится исследование

Возможность хранения объективных данных

На цифровом носителе

Исследование глаза с помощью щелевой лампы и сменой освещений позволяет увидеть мельчайшие признаки патологий всех структур. Отдельным преимуществом метода считается его дешевизна при использовании новых биомикроскопов с асферическими линзами и тонометрами, заменяющие традиционные тонометрию и офтальмоскопию.

Как расшифровать результаты биомикроскопии

При исследовании здорового глаза определяются:

  • Роговица: выпукло-вогнутая призма с легким голубоватым свечением. В толщине роговицы видны нервы и сосуды.
  • Радужная оболочка: пигментный слой представлен цветной (в зависимости от цвета глаз) бахромой вокруг зрачка, а в цилиарной зоне видны зоны сокращения цилиарной мышцы.
  • Хрусталик: прозрачное тело, что меняет свою форму при фокусировании. Состоит из эмбрионального ядра, покрытого корковым слоем, передней и задней капсулой.

Варианты возможных патологий и соответствующая им биомикроскопическая картина представлены в таблице.

Заболевание

Биомикроскопическая картина

Глаукома

  • Инъекция (расширение) сосудов конъюнктивы.
  • Симптом «эмиссария» - расширение склеральных отверстий, через которые в глаз заходят передние цилиарные артерии и выходят вены.
  • Множественные помутнения центральной зоны роговицы.
  • Атрофия пигментного листка радужной оболочки.
  • Отложения белковых комплексов на внутренней поверхности роговицы

Катаракта

  • Диссоциация (расслоение) вещества хрусталика, появление водяных щелей в предкатарактальном периоде.
  • Для ранних стадий характерны зоны помутнения в периферических участках.
  • По мере созревания катаракты уменьшается размер оптического среза (участка, через который проходят лучи щелевой лампы) хрусталика. Сначала виден только передний отдел среза, при зрелой катаракте - луч света отбивается от полностью помутневшего хрусталика

Инородное тело и травмы глаза

  • Инъекция сосудов конъюнктивы и склеры.
  • Инородные тела в роговице определяются в виде небольших желтых точек. С помощью биомикроскопии исследуется глубина проникновения.
  • При прободении роговицы наблюдается симптом «пустой передней камеры» (уменьшение размеров передней камеры глаза).
  • Трещины и разрывы роговицы
  • Отек и инфильтрация роговицы.
  • Неоваскуляризация (разрастания новых сосудов).
  • При древовидном кератите на эпителии (внешний покров роговицы) появляются пузырьки небольшого размера, которые сами вскрываются.
  • При гнойном кератите в центре роговицы образуется инфильтрат, впоследствии превращающийся в язву

Колобома радужки (врожденная аномалия, когда отсутствует часть радужной оболочки)

  • Дефект радужной оболочки глаза в форме кратера

Опухоли глаза

  • В участке поражения определяется новообразование неправильной формы.
  • Разрастание сосудов вокруг опухоли.
  • Смещение соседних структур.
  • Зоны усиленной пигментации

Благодаря своей диагностической ценности, простоте проведения и безопасности, биомикроскопия стала стандартной процедурой обследования офтальмологических больных наряду с измерением остроты зрения и осмотром глазного дна.

На видео ниже описана методика проведения биомикроскопии.

(греч, bios жизнь + mikros малый + skopeo наблюдать, исследовать) - специальный метод исследования, дающий возможность детально осмотреть оптические преломляющие среды и ткани глазного яблока.

Б. г. впервые предложена А. Гулльстрандом в 1911 г. В основе метода лежит феномен световой контрастности (феномен Тиндаля).

При помощи Б. г. можно обнаружить мельчайшие изменения в глазу, вызванные заболеванием или травмой, диагностировать очень мелкие инородные тела. Метод представляет большую ценность в диагностике ряда заболеваний глаз (напр., трахомы, глаукомы, катаракты, новообразований органа зрения и др.).

Исследование производится при помощи специального прибора - щелевой лампы (см.). Отечественная щелевая лампа ШЛ-56 сочетает мощный осветитель (500 тыс. люксов) и бинокулярный стереоскопический микроскоп с разрешающей способностью от X5 до X60. Микроскоп располагают прямо перед исследуемой тканью, осветитель - сбоку. Угол между ними называется углом биомикроскопии. Он варьирует в пределах +60°. Исследование ведется в темной комнате. Резкий контраст затемненных и освещенных лампой участков глаза позволяет видеть детали, неразличимые при обычном освещении.

В процессе Б. г. применяются следующие способы освещения: прямой фокальный, парафокальный, осцилляторный, проходящий свет, скользящий луч, зеркальное поле. Пользуясь специальными приспособлениями, осмотр можно производить в инфракрасных и ультрафиолетовых лучах спектра, люминесцентном, поляризованном свете.

Рис. 1. Оптический разрез роговой оболочки: а, б, в, г - передняя поверхность; д, е, ж, з - задняя поверхность; б - е и г - з - толщина роговой оболочки. Рис. 2. Линия Тюрка при биомикроскопии (беловатые точки): слева -г в проходящем свете; справа - в оптическом разрезе роговой оболочки.

Исследование в прямом фокальном освещении позволяет получить оптическое сечение (оптический разрез) роговицы, хрусталика, стекловидного тела, сетчатки и диска зрительного нерва. Оптический разрез роговицы имеет вид слегка сероватой, опалесцирующей призмы (рис. 1), ширина к-рой зависит от ширины пучка проходящего света. В норме разрез испещрен серыми точками и штрихами - так выглядят рассеченные пучком света фибриллы и нервы роговицы. При наличии в роговице воспалительного фокуса или помутнения оптический разрез дает возможность решить вопрос о том, где именно располагается патологический очаг, как глубоко поражена ткань роговицы. В случае наличия инородного тела осмотр в оптическом разрезе помогает установить, где оно находится - в роговице или проникает в полость глаза, что правильно ориентирует врача в выборе метода вмешательства.

При Б. г. легко выявляется линия Тюрка, к-рая встречается в 50% случаев при исследовании здоровых глаз, в основном у детей. Линия Тюрка непостоянна, ее образование и характерное расположение связывают с тепловым током внутриглазной жидкости. Охлаждение жидкости, движущейся вдоль задней поверхности роговицы, и замедление вследствие этого скорости ее тока приводит к осаждению на роговице взвешенных в камерной влаге клеточных элементов. Линия располагается на задней поверхности роговицы, вертикально внизу, и доходит до уровня нижнего зрачкового края. Она состоит из лейкоцитов и лимфоцитов, число которых колеблется от 10 до 30. В проходящем свете клеточные элементы имеют вид полупрозрачных отложений, в прямом фокальном свете приобретают вид беловатых точек (рис. 2).

При фокусировании света и микроскопа на хрусталике (прямой фокальный свет) выкраивается оптический разрез хрусталика в форме двояковыпуклого прозрачного тела (см. Хрусталик). В разрезе видны сероватые овальные полосы - зоны раздела, обусловленные различной плотностью вещества хрусталика (рис. 3). Выделяются внутренние поверхности эмбрионального ядра (1) с эмбриональными швами, обозначенными на рисунке черными Y-образными линиями, наружная поверхность эмбрионального ядра (2), поверхность старческого ядра (3), корковое вещество (4), зоны расщепления (5), передняя и задняя поверхности хрусталика (6). Изучение оптического разреза хрусталика дает возможность видеть и точно локализовать нежные начальные помутнения его вещества, что имеет большое значение в ранней диагностике разного рода катаракт.

С помощью метода биомикроскопии стекловидного тела выявляют в нем фибриллярные структуры серого цвета (остов стекловидного тела), неразличимые при исследовании другими методами. Изучение этих структур имеет определенное диагностическое значение, особенно при близорукости.

Биомикроскопия глазного дна (био-микроофтальмоскопия), биомикроскопия тканей глазного дна в лучах спектра (биомикрохромоофтальмоскопия) открывают новые возможности в офтальмоскопической диагностике (см. Офтальмоскопия). Применение прямого фокального света позволяет видеть оптическое сечение сетчатки и диска зрительного нерва. Сетчатка выявляется в форме вогнуто-выпуклой полупрозрачной сероватой полосы, расположенной между стекловидным телом и собственно сосудистой оболочкой глаза. Исследование оптического сечения сетчатой оболочки помогает диагностировать и точно локализовать мелкие кровоизлияния, микроаневризмы сосудов, элементы дистрофии ткани.

Диск зрительного нерва при био-микроскопии благодаря прозрачности формирующих его нервных волокон просматривается до решетчатой пластинки склеры. Осмотр диска зрительного нерва помогает ранней дифференциальной диагностике неврита зрительного нерва и застойного соска. Несколько меньшие возможности открываются при биомикроскопии непрозрачных отделов глазного яблока, в частности конъюнктивы, радужной оболочки, собственно сосудистой оболочки. Однако и в этом случае метод Б. г. является важным дополнением других методов обследования больного с заболеванием глаз.

См. также Обследование больного (офтальмологическое).

Библиография: Корeйeвич И. А. Биомикроскопия глаза, Киев, 1969; Ш у л ь-пина Н. Б. Биомикроскопия глаза, М., 1974; Berliner М. L. Biomicroscopy of the eye, v. 1-2, N. Y., 1949, bibliogr.; Kajiura М., Hashimoto H. a. T a k a h a s h i F. Recent advances in biomicroscopy of the fundus, Eye, Ear, Nose Tlir. Monthly, v. 53, p. 17, 1974.

H. Б. Шульпина.

Биомикроскопия глаза – это объективный метод исследования структур глаза, который проводится специальным прибором – биомикроскопом (щелевой лампой). С помощью данного метода можно исследовать элементы переднего и заднего отдела глазного яблока (узнайте о глазного яблока).

Строение прибора

Биомикроскоп состоит из осветительной системы, которая является источником света, и микроскопа на два глаза.

Свет от лампы проходит через щелевидную диафрагму, после чего проецируется на роговицу или склеру в виде продолговатого прямоугольника. Образующийся оптический срез и рассматривают в микроскоп. Врач может перемещать световую щель на те элементы, которые необходимо исследовать.

Показания и противопоказания

При патологии каких структур глаза показано проведение биомикроскопии?

  • Конъюнктивы (конъюнктивит, образования)
  • Роговицы (воспаление, дистрофические изменения).
  • Склеры.
  • Радужки (воспаление, аномалии строения).
  • Хрусталика.
  • Стекловидного тела.

Также данные методики проводится при катаракте, глаукоме, наличии инородных тел в глазу, на этапе подготовки к операции на глазах и в послеоперационный период.

Абсолютных противопоказаний к данной диагностической манипуляции нет. Процедуру стоит перенести, если у пациента обострение психических расстройств или он находится в состоянии алкогольного опьянения.

Методика проведения

Сначала проводится подготовка пациента – в глаза закапываются капли, расширяющие зрачок (при необходимости осмотра глубинных структур), или специальные красители (в случаях, когда нужно диагностировать патологию роговицы).

Пациент устанавливает голову на специальную подставку, имеющую упоры для лба и подбородка. Врач находится напротив больного, перемещает микроскоп и лампу на уровень глаз пациента. С помощью диафрагм регулируется размер и форма световой щели (чаще – в виде прямоугольника, реже – в виде небольшой окружности). Лучи света направляются на исследуемые структуры глаза, после чего проводится их детальный осмотр.

Исследуя роговицу, можно обнаружить очаги помутнений, инфильтраты, новообразованные сосуды. Процедура биомикроскопии позволяет отчетливо рассмотреть хрусталик, а также выявить локализацию патологических изменений. Данный метод позволяет исследовать кровеносные сосуды конъюнктивы.

Также с помощью биомикроскопа можно оценить сферичность и зеркальность роговицы, определить ее толщину, а также глубину передней камеры глазного яблока.

Выделяют несколько вариантов освещения во время данной диагностической процедуры:

  • прямое фокусированное освещение – свет направляют на исследуемый участок глаза. Так оценивают прозрачность оптических сред глазного яблока;
  • непрямой фокусированный свет – световые лучи направляют рядом с исследуемой зоной, в результате чего удается лучше рассмотреть патологические изменения за счет контраста освещенного и неосвещенного участка;
  • отраженный свет – так исследуются определенные структуры (например, роговицы) отраженным от других элементов (радужкой) светом, как от зеркала.

В последнее время все более популярной становится ультразвуковая биомикроскопия глаза, благодаря которой можно исследовать боковые отделы хрусталика, заднюю поверхность и срез радужки, цилиарное тело.

Узнайте также как проводятся другие обследования у офтальмолога, например, замеры давления в глазах и страшно ли это? Читайте

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

– это метод обследования в офтальмологии, позволяющий провести прижизненную микроскопию конъюнктивы, передней камеры глазного яблока, хрусталика, стекловидного тела, роговой и радужной оболочек. Визуализация глазного дна доступна только при использовании специальной трехзеркальной линзы Гольдмана. Методика дает возможность выявлять патологические изменения воспалительного, дистрофического и посттравматического генеза, участки неоваскуляризации, аномалии строения, помутнение оптических сред глаза, зоны кровоизлияния. Неинвазивная процедура проводится нативно после предварительной подготовки пациента. Биомикроскопия глаза не сопровождается болевым синдромом, может выполняться изолированно или в комплексе с другими диагностическими исследованиями.

Для проведения биомикроскопии глаза используется щелевая лампа. Данный прибор был создан в 1911 году шведским офтальмологом А. Гульстрандом. За разработку устройства для микроскопии живого глаза ученому присвоили Нобелевскую премию. На сегодняшний день биомикроскопия глаза – это один с наиболее точных методов диагностики в офтальмологии , позволяющий оценить микроскопические изменения структур глазного яблока, недоступные для обозрения при использовании других диагностических процедур. Однако по сравнению с оптической когерентной томографией исследование не дает возможности столь четко определить локализацию и объем патологического процесса.

Щелевая лампа для биомикроскопии глаза представляет собой бинокулярный микроскоп со специальной осветительной системой, которая включает в себя регулируемую щелевую диафрагму и светофильтры. При прохождении линейного пучка света через оптические среды глазного яблока они доступны к визуализации при помощи микроскопа. В ходе проведения биомикроскопии глаза варианты освещения поддаются коррекции, что делает более доступными для обзора различные структуры глазного яблока. Основной способ освещения – диффузный. При этом офтальмолог фокусирует пучок света через широкую щель на конкретном участке, после чего направляет к нему ось микроскопа.

Первый этап биомикроскопии глаза – ориентировочный осмотр. Далее щель необходимо сузить до 1 мм и провести прицельную диагностику. Окружающие ткани при этом затемненные, что лежит в основе феномена Тиндаля (световой контрастности). Направление луча света на границе оптических сред глазного яблока резко меняется, что связано с различным показателем преломления. Частичное отражение света провоцирует увеличение яркости на границе раздела. Благодаря закону отражения можно не только исследовать поверхностные структуры, но и оценить глубину патологического процесса.

Показания

Биомикроскопия глаза – это стандартное офтальмологическое обследование, которое часто проводят в комплексе с визометрией и офтальмоскопией как при собственно заболеваниях органа зрения, так и для выявления реактивных изменений глазного яблока при системных патологиях. Процедура рекомендована пациентам с травматическими повреждениями, доброкачественными или злокачественными новообразованиями конъюнктивы, вирусным или бактериальным конъюнктивитом. Показаниями к проведению данного исследования со стороны радужки являются аномалии развития, увеит , а также иридоциклит .

Биомикроскопия глаза позволяет визуализировать отек, эрозии и складки боуменовой оболочки при кератите . Данный метод рекомендован для дифференциальной диагностики поверхностного и глубокого кератита. Биомикроскопия передней камеры глаза проводится для выявления признаков воспалительного процесса. Эта методика информативна для исследования врожденной и приобретенной катаракты , а также диагностики переднего и заднего полярного помутнения хрусталика и зонулярной формы заболевания.

Биомикроскопия глаза – необходимое обследование у пациентов с болезнью Стерджа-Вебера , сахарным диабетом , гипертонической болезнью . Исследование при помощи щелевой лампы показано при инородном теле глазного яблока вне зависимости от его локализации. Также данная процедура проводится на этапе подготовки к хирургическому вмешательству на органе зрения. В раннем и позднем послеоперационном периоде биомикроскопия глаза рекомендована для оценки результатов лечения. Два раза в год ее необходимо назначать пациентам, которые находятся на диспансерном учете в связи с катарактой и глаукомой . Противопоказания к проведению процедуры отсутствуют.

Подготовка к биомикроскопии

Перед проведением исследования офтальмолог применяет специальные капли для расширения зрачков с целью дальнейшего осмотра хрусталика и стекловидного тела. Для диагностики эрозивных поражений роговой оболочки перед исследованием используют краситель. Следующий этап подготовки – закапывание физиологического раствора или других капель для удаления красителя с неповрежденных структур роговицы. Если патологический процесс органа зрения сопровождается болевым синдромом или причиной проведения биомикроскопии глаза является инородное тело, перед процедурой показано использование местных анестетиков.

Методика проведения

Биомикроскопия глаза выполняется офтальмологом в условиях амбулатории или офтальмологического стационара при помощи щелевой лампы. Исследование осуществляется в затемненном помещении. Пациент садится таким образом, чтобы зафиксировать лоб и подбородок на специальной опоре. При наличии заболевания, сопровождающегося фотофобией, офтальмолог использует световые фильтры для снижения яркости освещения. Далее основание координированного столика приближают к лобно-подбородочной опоре, размещая его подвижную часть по центру. С латеральной стороны глаза под углом 30-45° устанавливают осветитель.

При биомикроскопии глаза верхнюю часть столика перемещают до момента достижения наиболее четкого изображения. Далее врач ищет под микроскопом освещенный участок. Для коррекции четкости биомикроскопической картины специалист плавно вращает винт микроскопа. С целью осмотра всех структур глазного яблока в определенной плоскости следует перемещать верхнюю часть аппарата с латеральной в медиальную сторону. Возможность сдвигать координированный столик в переднезаднем направлении при биомикроскопии глаза позволяет выявить патологические изменения органа зрения на разной глубине. Задние отделы глаза доступны к визуализации только при использовании отрицательной линзы (58,0 диоптрий).

При биомикроскопии глаза в темном поле используется непрямое освещение, при помощи которого офтальмолог может оценить состояние сосудистой сети и десцеметовой мембраны, обнаружить преципитаты на участке, расположенном возле освещенной зоны. При исследовании в диафаноскопическом (отраженном) свете угол между осветительной системой и микроскопом увеличивают, тогда при отражении света от одной структуры глаза расположенные рядом оболочка, хрусталик или стекловидное тело становятся более доступными для визуализации. Данная техника биомикроскопии глаза позволяет выявить отек эпителиального и эндотелиального слоев роговой оболочки, рубцы, патологические новообразования, атрофию заднего пигментного слоя радужной оболочки.

Офтальмолог начинает осмотр с малых увеличений. При необходимости в ходе проведения биомикроскопии глаза также используются более сильные линзы. Данная методика дает возможность получить изображение, увеличенное в 10, 18 и 35 раз. Обследование не вызывает дискомфорта и болевых ощущений. Его средняя продолжительность составляет 10-15 минут. Длительность биомикроскопии глаза увеличивается, если пациент часто моргает. Неинвазивный метод диагностики не вызывает побочных реакций и осложнений. Результат биомикроскопии глаза выдается в виде заключения на бумаге.

Интерпретация результатов

В норме сосудистый рисунок в месте сочленения роговицы со склерой можно условно разделить на следующие зоны: палисада, сосудистых петель и краевой петлистой сети. Область палисада Вогта при биомикроскопии глаза имеет вид параллельно направленных сосудов. Анастомозы не определяются. Средняя ширина данной зоны составляет 1 мм. В средней части лимба, поперечник которой составляет 0,5 мм, выявляется большое количество анастомозов. Ширина в области краевой петли достигает 0,2 мм. При воспалении поперечник лимба расширен и несколько приподнят. Сосудистая деменция и энцефалотригеминальный ангиоматоз сопровождаются ампуловидным расширением сосудов и появлением множественных аневризм.

В норме при биомикроскопии глаза боуменова и десцеметова оболочки не визуализируются. Стромальная часть опалесцирует. При воспалении или травматическом повреждении эпителий отечный. Его отслойка может сопровождаться образованием множественных эрозий. При глубоком кератите в отличие от поверхностного визуализируются инфильтраты и рубцовые изменения стромы. При биомикроскопии глаза выявляется специфический симптом поверхностной формы – образование множественных складок на боуменовой оболочке. Реакция стромы на течение патологического процесса проявляется отечностью, инфильтрацией тканей, усилением ангиогенеза и образованием складок на десцеметовой оболочке. При воспалительном процессе во влаге передней камеры обнаруживается белок, что ведет к опалесценции.

Нарушение трофики радужки при биомикроскопии глаза проявляется деструкцией пигментной каймы и образованием задних синехий. В молодом возрасте при обследовании хрусталика визуализируется эмбриональное ядро и швы. После 60 лет образуется возрастная поверхность ядра с более молодой корой. На оптических срезах определяется капсула. При биомикроскопии глаза выявляется эктопия или катаракта. По локализации помутнения устанавливается вариант течения заболевания (катаракта эмбриональных швов, зонулярная, передняя и задняя полярные).

Стоимость биомикроскопии глаза в Москве

Стоимость диагностического исследования зависит от технических характеристик щелевой лампы (стационарная, ручная, 3-х, 5-ти позиционная) и фирмы-производителя. На ценообразование также влияет характер врачебного заключения. В частных медицинских центрах процедура обходится дороже, чем в государственной клинике. Часто стоимость определяется категорией офтальмолога и экстренностью исследования. Незначительное повышение цены на биомикроскопию глаза в Москве возможно при использовании дополнительных средств на этапе подготовки (анальгетики, краситель, физиологический раствор).

Благодаря Б. г. возможна ранняя трахомы, глаукомы, катаракты и других заболеваний глаза, а также новообразований. Б. г. позволяет определить прободное глазного яблока, обнаружить не выявляемые при рентгенологическом исследовании мельчайшие в конъюнктиве, роговице, передней камере глаза и хрусталике (частицы стекла, алюминия, угля, ).

Биомикроскопию глаза осуществляют при помощи щелевой лампы (стационарной или ручной), основными частями которой являются осветитель и увеличительное устройство ( стереоскопический или лупа). На пути светового пучка находится щелевая , позволяющая получить вертикальную и горизонтальную осветительные щели. С помощью измерительного окуляра стереоскопического микроскопа определяют глубину передней камеры глаза; дополнительная рассеивающая силой около 60 дптр , нейтрализующая положительное действие оптической системы глаза, дает возможность исследовать Глазное дно .

Исследование проводят в темной комнате, чтобы создать резкий между затемненными и освещенными лампой участками глазного яблока. Максимально раскрытая щель диафрагмы обеспечивает диффузное , позволяющее осмотреть все участки переднего отдела глаза, узкая щель - светящийся оптический « ». При совмещении пучка света с наблюдаемым участком глаза получается прямое фокальное освещение, наиболее часто применяемое при Б. г. и позволяющее установить локализацию патологического процесса. При фокусировании света на роговице получают оптический , имеющий форму выпукло-вогнутой призмы, на котором хорошо выделяются передняя и задняя поверхности, собственно роговицы. При выявлении в роговице воспаления или помутнения Б. г. позволяет определить расположение патологического очага, глубину поражения ткани; при наличии инородного тела - установить, находится ли оно в ткани роговицы или частично проникает в полость глаза, что позволяет врачу правильно выбрать лечебную тактику.

При фокусировании света на хрусталике определяется его оптический срез в форме двояковыпуклого прозрачного тела. В срезе четко выделяются поверхности хрусталика, а также сероватые овальные полосы - так называемые зоны раздела, обусловленные различной плотностью вещества хрусталика. Изучение оптического среза хрусталика позволяет установить точную локализацию начинающегося помутнения его вещества, оценить состояние капсулы.

При биомикроскопии стекловидного тела в нем выявляются не различимые при других методах исследования фибриллярные структуры (остов стекловидного тела), изменения которых свидетельствуют о воспалительных или дистрофических процессах в глазном яблоке. Фокусирование света на глазном дне дает возможность исследовать в оптическом срезе сетчатку и (размер и глубина экскавации), что имеет значение при диагностике глаукомы, для раннего выявления неврита зрительного нерва, застойного соска, центрально расположенных разрывов сетчатки.

При Б. г. применяют и другие виды освещения. Непрямое освещение (исследование в темном поле), при котором наблюдаемый участок освещается лучами, отраженными более глубоких тканей глаза, позволяет хорошо рассмотреть сосуды, участки атрофии и тканей. Для осмотра прозрачных сред используют освещение проходящим светом и , что способствует выявлению незначительных неровностей роговицы, детальному исследованию поверхности капсулы хрусталика и др. Осмотр глазного дна производят также в лучах спектра (). Менее информативна биомикроскопия полупрозрачных и непрозрачных тканей глазного яблока (например, конъюнктивы, радужки).

Библиогр.: Шульпина Н.Б. Биомикроскопия глаза, М., 1974

II Биомикроскопи́я гла́за (Био- + )

метод визуального исследования оптических сред и тканей глаза, основанный на создании резкого контраста между освещенными и неосвещенными участками и увеличении изображения в 5-60 раз; осуществляется с помощью щелевой лампы.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Биомикроскопия глаза" в других словарях:

    биомикроскопия глаза - rus биомикроскопия (ж) глаза eng slit lamp examination fra examen (m) à la lampe à fente deu Linsenuntersuchung (f) mit der Spaltlampe spa examen (m) con lámpara de hendidura … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    - (био + микроскопия) метод визуального исследования оптических сред и тканей глаза, основанный на создании резкого контраста между освещенными и неосвещенными участками и увеличении изображения в 5 60 раз; осуществляется с помощью щелевой лампы … Большой медицинский словарь

    ОЖОГИ ГЛАЗА ХИМИЧЕСКИЕ - мед. Химические ожоги глаза одно из неотложных состояний в офтальмологии, способное обусловить нарушение или полную потерю зрения. Частота 300 случаев/100 000 населения (ожоги щелочами составляют 40% всех случаев ожогов глаз, кислотами 10%).… … Справочник по болезням

    РАНЕНИЯ ГЛАЗА ПРОНИКАЮЩИЕ - мед. Проникающие ранения глаза характеризуются нарушением целости его фиброзной оболочки (роговицы и склеры). Клиническая картина Наличие раневого канала Выпадение или ущемление в ране внутренних оболочек глаза (радужки, собственно сосудистой … Справочник по болезням

    МЕЛАНОМА СОБСТВЕННО СОСУДИСТОЙ ОБОЛОЧКИ ГЛАЗА - мед. Меланома собственно сосудистой оболочки глаза злокачественная пигментная опухоль. Частота 0,02 0,08% пациентов, наблюдаемых офтальмологами амбулаторно Чаще диагностируют у мужчин в возрасте 31 60 лет (75%) Пик заболеваемости (57%) 50… … Справочник по болезням

    I Инородные тела Инородные тела (corpora aliena) чужеродные для организма предметы, внедрившиеся в его ткани, органы или полости через поврежденные покровы или через естественные отверстия. Инородными телами являются также введенные в организм с… … Медицинская энциклопедия

    I Катаракта (cataracta; греч. katarrhaktēs водопад) заболевание глаз, характеризующееся помутнением хрусталика. Различают первичные (врожденные и приобретенные) и вторичные катаракты. Врожденные К. (рис. 1) могут быть наследственными (доминантный … Медицинская энциклопедия

    I (oculus) орган зрения, воспринимающий световые раздражения; является частью зрительного анализатора, который включает также зрительный нерв и зрительные центры, расположенные в коре большого мозга. Глаз состоит из глазного яблока и… … Медицинская энциклопедия

    - (Гонио + биомикроскопия (Биомикроскопия глаза); син. микрогониоскопия) метод исследования радужно роговичного угла глаза (угла передней камеры) путем его осмотра с помощью гониоскопа и щелевой лампы … Медицинская энциклопедия

    Туберкулез внелегочный условное понятие, объединяющее формы туберкулеза любой локализации, кроме легких и других органов дыхания. В соответствии с клинической классификацией туберкулеза (Туберкулёз), принятой в нашей стране, к Т. в. относят… … Медицинская энциклопедия