Сферическая аберрация. Фундаментальные исследования Аберрация оптической системы

Аберрация в астрономии

Словом аберрация обозначают множество оптических эффектов связанных с искажением объекта при наблюдении. В этой статье мы расскажет о нескольких видах аберрации, наиболее актуальных для астрономических наблюдений.

Аберрация света в астрономии это кажущееся смещение небесного объекта вследствие конечной скорости распространения света в сочетании с движением наблюдаемого объекта и наблюдателя. Действие аберрации приводит к тому, что видимое направление на объект не совпадает с геометрическим направлением на него в тот же момент времени.

Эффект состоит в том, что вследствие движения Земли вокруг Солнца и времени, необходимого для распространения света, наблюдатель видит звезду не в том месте, где она находится. Если бы Земля была неподвижна, или если бы свет распространялся мгновенно, то световой аберрации не было бы. Поэтому, определяя положение звезды на небе посредством телескопа, мы должны отсчитать не тот угол, под которым наклонена звезда, а несколько увеличив его в сторону движения Земли.

Эффект аберрации не велик. Наибольшая его величина достигается при условии движения земли перпендикулярного направлению луча. При этом отклонение положения звезды составляет всего 20,4 секунды, потому что земля в 1 секунду времени проходит только 30км, а луч света— 300 000км.

Существует также несколько видов геометрической аберрации . Сферическая аберрация — аберрация линзы или объектива, заключающаяся в том, что широкий пучок монохроматического света, исходящий из точки, лежащей на главной оптической оси линзы, при прохождении через линзу пересекается не в одной, а во многих точках, расположенных на оптической оси на разном удалении от линзы, вследствие чего изображение получается нерезким. В результате такой точечный объект как звезду можно видеть как небольшой шарик, принимая размер этого шарика за размеры звезды.

Кривизна поля изображения — аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Поэтому, когда центральная часть изображения сфокусирована резко, то его края будут лежать не в фокусе и изображение нерезко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой. Этот вид аберрации не существенен для астрономии.

А вот и еще несколько видов аберрации:

Дифракциoнная аберрация возникает вследствие дифракции света на диафрагме и оправе фотообъектива. Дифракционная аберрация ограничивает разрешающую способность фотообъектива. Из-за этой аберрации минимальное угловое расстояние между точками, разрешаемое объективом, ограничено величиной лямда/D радиан, где ламда — длина волны используемого света (к оптическому диапазону обычно относят электромагнитные волны с длиной от 400 нм до 700 нм), D — диаметр объектива. Глядя на эту формулу становится понятным, на сколько важен диаметр объектива. Именно этот параметр является ключевым для самых больших и самых дорогих телескопов. Также ясно, что телескоп способный видеть в рентгеновских лучах выгодно отличается от обычного оптического телескопа. Дело в том, что длинна волны рентгеновских лучей в 100 раз меньше длинны волны света в оптическом диапазоне. Следовательно для таких телескопов минимально различимое угловое расстояние в 100 раз меньше чем для обычных оптических телескопов с тем же диаметром объектива.

Изучение аберрации позволило существенно усовершенствовать астрономические приборы. В современных телескопах эффекты аберрации сведены в минимуму, однако именно аберрация ограничивает возможности оптических приборов.

Принято рассматривать для пучка лучей, выходящего из точки предмета, расположенной на оптической оси. Однако, сферическая аберрация имеет место и для других пучков лучей, выходящих из точек предмета, удаленных от оптической оси, но в таких случаях она рассматривается как составная часть аберраций всего наклонного пучка лучей. Причём, хотя эта аберрация и называется сферической , она характерна не только для сферических поверхностей.

В результате сферической аберрации цилиндрический пучок лучей, после преломления линзой (в пространстве изображений) получает вид не конуса, а некоторой воронкообразной фигуры, наружная поверхность которой, вблизи узкого места, называется каустической поверхностью. При этом изображение точки имеет вид диска с неоднородным распределением освещённости, а форма каустической кривой позволяет судить о характере распределения освещённости. В общем случае, фигура рассеяния, при наличии сферической аберрации, представляет собой систему концентрических окружностей с радиусами пропорциональными третьей степени координат на входном (или выходном) зрачке.

Расчётные значения

Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .

Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

  • 2h 1 - диаметр отверстия системы;
  • a" - расстояние от системы до точки изображения;
  • δs" - продольная аберрация.

Для объектов расположенных в бесконечности

Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

Уменьшение и исправление

В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки» , находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния) . Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю. То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации. Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

Обычно сферическую аберрацию устраняют для одного значения высоты h 0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте h e определяемой по простой формуле

Остаточная сферическая аберрация приводит к тому, что изображение точки так и не станет точечным. Оно останется диском, хотя и значительно меньшего размера, чем в случае не исправленной сферической аберрации.

Для уменьшения остаточной сферической аберрации часто прибегают к рассчитанному «переисправлению» на краю зрачка системы, придавая сферической аберрации краевой зоны положительное значение (δs" > 0). При этом, лучи, пересекающие зрачок на высоте h e , перекрещиваются ещё ближе к точке фокуса, а краевые лучи, хотя и сходятся за точкой фокуса, не выходят за границы диска рассеяния. Таким образом, размер диска рассеяния уменьшается и возрастает его яркость. То есть улучшается, как детальность, так и контраст изображения. Однако, в силу особенностей распределения освещённости в диске рассеяния, объективы с «переисправленной» сферической аберрацией, часто, обладают «двоящим» размытием вне зоны фокуса.

В отдельных случаях допускают значительное «переисправление». Так, например, ранние «Планары» фирмы Carl Zeiss Jena имели положительное значение сферической аберрации (δs" > 0), как для краевых, так и для средних зон зрачка. Это решение несколько снижает контраст при полном отверстии, но заметно увеличивает разрешение при незначительном диафрагмировании.

Примечания

Литература

  • Бегунов Б. Н. Геометрическая оптика, Изд-во МГУ, 1966.
  • Волосов Д. С., Фотографическая оптика. М., «Искусство», 1971.
  • Заказнов Н. П. и др., Теория оптических систем, М., «Машиностроение», 1992.
  • Ландсберг Г. С. Оптика. М.,ФИЗМАТЛИТ, 2003.
  • Чуриловский В. Н. Теория оптических приборов, Л., «Машиностроение», 1966.
  • Smith, Warren J. Modern optical engineering, McGraw-Hill, 2000.

Wikimedia Foundation . 2010 .

Физическая энциклопедия

Один из типов аберраций оптических систем (См. Аберрации оптических систем); проявляется в несовпадении Фокусов для лучей света, проходящих через осе симметрическую оптическую систему (линзу (См. Линза), Объектив) на разных расстояниях от … Большая советская энциклопедия

Искажение изображения в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы. * * * СФЕРИЧЕСКАЯ… … Энциклопедический словарь

сферическая аберрация - sferinė aberacija statusas T sritis fizika atitikmenys: angl. spherical aberration vok. sphärische Aberration, f rus. сферическая аберрация, f pranc. aberration de sphéricité, f; aberration sphérique, f … Fizikos terminų žodynas

СФЕРИЧЕСКАЯ АБЕРРАЦИЯ - См. аберрация, сферическая … Толковый словарь по психологии

сферическая аберрация - обусловлена несовпадением фокусов лучей света, проходящих на разных расстояниях от оптической оси системы, приводит к изображению точки в виде кружка разной освещенности. Смотри также: Аберрация хроматическая аберрация … Энциклопедический словарь по металлургии

Одна из аберраций оптических систем, обусловленная несовпадением фокусов для лучей света, проходящих через осесимметричную оптич. систему (линзу, объектив) на разных расстояниях от оптической осы этой системы. Проявляется в том, что изображение… … Большой энциклопедический политехнический словарь

Искажение изображения в оптич. системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптич. оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы … Естествознание. Энциклопедический словарь

Идеальных вещей не существует... Не существует и идеального объектива - объектива, способного строить изображение бесконечно малой точки в виде бесконечно малой точки. Виной тому - сферическая аберрация .

Сферическая аберрация - искажение, возникающее из-за разности фокусов для лучей, проходящих на разных расстояних от оптической оси. В отличие от описанных ранее комы и астигматизма, это искажение не является ассиметричным и приводит к равномерному расхождению лучей от точечного источника света.

Сферическая аберрация присуща в разной степени всем объективам, за немногим исключением (одно известное мне - Эра-12, у нее резкость в большей мере ограничена хроматизмом) именно это искажение ограничивает резкость объектива на открытой диафрагме.

Схема 1 (Википедия). Появление сферической аберрации

Сферическая аберрация имеет много лиц - иногда ее величают благородным "софтом", иногда - низкопробным "мылом", она в большей мере формирует боке объектива. Благодар ей Триоплан 100/2.8 - генератор пузырей, а Новый Петцваль Ломографического общества имеет контроль размытия... Впрочем, обо всем по порядку.

Как проявляется сферическая аберрация на снимке

Наиболее очевидным проявлением является нерезкость контуров объекта в зоне резкости ("свечение контуров", "софт-эффект"), скрадывание мелких деталей, ощущение дефокусировки ("мыло" - в тяжелых случаях);

Пример сферической аберрации (софт) на снимке, выполненном на Индустар-26М от ФЭД, F/2.8

Гораздо менее очевидным является проявление сферической аберрации в боке объектива. В зависимости от знака, степени исправления и пр. сферическая аберрация может формировать различные кружки нерезкости.

Пример снимка на Триплет 78/2.8 (F/2.8) - кружки нерезкости имеют яркую кайму и светлый центр - объектив имеет большую величину сферической аберрации

Пример снимка на апланат КО-120М 120/1.8 (F/1.8) - кружок нерезкости имеет слабо выраженную кайму, но она таки есть. У объектива, судя по тестам (опубликованы мною ранее в иной статье) - сферическая аберрация невелика

И, как пример объектива, у которого величина сферической аберрации несказанно мала - снимок на Эра-12 125/4 (F/4). Кружок вообще лишен каймы, распределение яркости очень ровное. Это говорит о превосходной коррекции объектива (что действительно правда).

Устранение сферической абберации

Основной способ - диафрагмирование. Отсекание "лишних" пучков позволяет хорошо поднимать резкость.

Схема 2 (Википедия) - уменьшение сферической аберрации с помощью диарфамы (1 рис.) и с помощью дефокусировки (2 рис.). Способ дефокусировки обычно не подходит для фотографии.

Примеры фотографий миры (вырезан центр) на разных диафрагмах - 2.8, 4, 5.6 и 8, выполненнах с помощью объектива Индустар-61 (ранний, ФЭД).

F/2.8 - заматен довольно сильный софт

F/4 - софт уменьшился, улучшилась детализация снимка

F/5.6 - софт практически отутствует

F/8 - софт отсутствует, хорошо видны мелкие детали

В графических редакторах можно использовать функции повышения резкости и удаления размытия, что позволяет несколько уменьшить негативный эффект сферической аберрации.

Иногда сферическая аберрация возникает из-за неисправности объектива. Обычно - нарушения промежутков между линзами. Помогает юстировка.

Например, есть подозрение, что при пересчете Юпитер-9 на ЛЗОС пошло что-то не так: в сравнении с Юпитер-9 производства КМЗ, резкость у ЛЗОС просто отсутствует из-а огромной сферической аберрации. Де-факто - объективы отличаются абсолютно всем,кроме циферок 85/2. Белый может биться с Canon 85/1.8 USM, а черный - разве что с Триплетом 78/2.8 и софт-объективами.

Снимок на черный Юпитер-9 80-х годов, ЛЗОС (F/2)

Снимок на белый Юпитер-9 1959 г., КМЗ (F/2)

Отношение к сферической аберрации фотографа

Сферическая аберрация снижает резкость снимка и иногда неприятна - кажется, что объект не в фокусе. Не следует в обычной съемке использовать оптику с повышенной сфрической аберрацией.

Однако сферическая аберрация - неотъемлемая часть рисунка обеъктива. Без нее не было бы красивых мягких портретов на Таир-11, сумасшедших сказочных моноклевых пейзажей, пузырчатого боке знаменитого Meyer Trioplan, "гороха" Индустара-26М и "объемных" кружков в виде кошачьего глаза у Zeiss Planar 50/1.7. Не стоит пытаться избавиться от сферической аберрации в объективах - стоит пытаться найти ей применение. Хотя, конечно, избыточная сферическая аберрация в большинстве случаев ничего хорошего не несет.

Выводы

В статье мы подробно разобрали влияние сферической аберрации на фотографию: на резкость, боке, эстетичность и пр.

Рассмотрим даваемое оптической системой изображение Точки, расположенной на оптической оси. Так как оптическая система обладает круговой симметрией относительно оптической оси, то достаточно ограничиться выбором лучей, лежащих в меридиональной плоскости. На рис. 113 показан ход лучей, характерный для положительной одиночной линзы. Положение

Рис. 113. Сферическая аберрация положительной лннзы

Рис. 114. Сферическая аберрация для точки вне оси

идеального изображения предметной точки А определяется параксиальным лучом, пересекающим оптическую ось на расстоянии от последней поверхности. Лучи, образующие с оптической осью конечные углы не приходят в точку идеального изображения. Для одиночной положительной линзы, чем больше абсолютное значение угла тем ближе к линзе луч пересекает оптическую ось. Это объясняется неодинаковой оптической силой линзы в ее различных зонах, которая увеличивается по мере удаления от оптической оси.

Указанное нарушение гомоцентричности вышедшего пучка лучей можно характеризовать разностью продольных отрезков для параксиальных лучей и для лучей, проходящих через плоскость входного зрачка на конечных высотах: Эта разность называется продольной сферической аберрацией.

Наличие сферической аберрации в системе приводит к тому, что вместо резкого изображения точки в плоскости идеального изображения получается кружок рассеяния, диаметр которого равен удвоенному значению Последнее связано с продольной сферической аберрацией соотношением

и называется поперечной сферической аберрацией.

Следует отметить, что при сферической аберрации сохраняется симметрия в вышедшем из системы пучке лучей. В отличие от других монохроматических аберраций сферическая аберрация имеет место во всех точках поля оптической системы, причем при отсутствии других аберраций для точек вне оси вышедший из системы пучок лучей будет оставаться симметричным относительно главного луча (рис. 114).

Приближенное значение сферической аберрации можно определить по формулам аберраций третьего порядка через

Для предмета, расположенного на конечном расстоянии, как следует из рис. 113,

В пределах действенности теории аберраций третьего порядка можно принять

Если положить, что то согласно условиям нормировки получим

Тогда по формуле (253) найдем, что поперечная сферическая аберрация третьего порядка для предметной точки, расположенной на конечном расстоянии,

Соответственно для продольной сферической аберраций третьего лорядка при допущении согласно (262) и (263) получим

Формулы (263) и (264) справедливы и для случая предмета, расположенного в бесконечности, если вычислена при условиях нормировки (256), т. е. при реальном фокусном расстоянии.

В практике аберрационного расчета оптических систем при вычислении сферической аберрации третьего порядка удобно пользоваться формулами, содержащими координату луча на входном зрачке. Тогда при согласно (257) и (262) получим:

если вычислена при условиях нормировки (256).

Для условий нормировки (258), т. е. для приведенной системы, согласно (259) и (262) будем иметь:

Из приведенных выше формул следует, что при данной сферическая аберрация третьего порядка тем больше, чем больше координата луча на входном зрачке.

Так как сферическая аберрация присутствует для всех точек поля, то при аберрационной коррекции оптической системы первостепенное внимание уделяют исправлению сферической аберрации. Наиболее простой оптической системой со сферическими поверхностями, в которой можно уменьшить сферическую аберрацию, является комбинация положительной и отрицательной линз. Как у положительной, так и у отрицательной линз крайние зоны преломляют лучи сильнее, чем зоны, расположенные вблизи оси (рис. 115). Отрицательная линза имеет положительную сферическую аберрацию. Поэтому комбинация положительной линзы, имеющей отрицательную сферическую аберрацию, с отрицательной линзой позволяет получить систему с исправленной сферической аберрацией. К сожалению, устранить сферическую аберрацию можно только для некоторых лучей, но нельзя ее полностью исправить в пределах всего входного зрачка.

Рис. 115. Сферическая аберрация отрицательной линзы

Таким образом, любая оптическая система всегда имеет остаточную сферическую аберрацию. Остаточные аберрации оптической системы обычно представляют в виде таблиц и иллюстрируют графиками. Для предметной точки, расположенной на оптической оси, приводятся графики продольной и поперечной сферических аберраций, представленные в виде функций координат, или

Кривые продольной и соответствующей ей поперечной сферической аберрации показаны на рис. 116. Графики на рис. 116, а соответствуют оптической системе с недоисправленной сферической аберрацией. Если для такой системы ее сферическая аберрация определяется только аберрациями третьего порядка, то согласно формуле (264) кривая продольной сферической аберрации имеет вид квадратичной параболы, а кривая поперечной аберрации - кубической параболы. Графики на рис. 116, б соответствуют оптической системе, у которой сферическая аберрация исправлена для луча, проходящего через край входного зрачка, а графики на рис. 116, в - оптической системе с перенаправленной сферической аберрацией. Исправление или переисправление сферической аберрации можно получить, например, комбинируя положительную и отрицательную линзы.

Поперечная сферическая аберрация характеризует кружок рассеяния, который получается вместо идеального изображения точки. Диаметр кружка рассеяния для данной оптической системы зависит от выбора плоскости изображения. Если эту плоскость сместить относительно плоскости идеального изображения (плоскости Гаусса) на величину (рис. 117, а), то в смещенной плоскости получим поперечную аберрацию связанную с поперечной аберрацией в плоскости Гаусса зависимостью

В формуле (266) слагаемое на графике поперечной сферической аберрации, построенном в координатах является прямой, проходящей через начало координат. При

Рис. 116. Графическое представление продольной и поперечной сферических аберраций

Возникновение этой погрешности можно проследить с помощью легко доступных опытов. Возьмем простую собирающую линзу 1 (например, плосковыпуклую линзу) по возможности с большим диаметром и малым фокусным расстоянием. Небольшой и в то же время достаточно яркий источник света можно получить, если, просверлив в большом экране 2 отверстие диаметром около , укрепить перед ним кусочек матового стекла 3, освещенного сильной лампой с небольшого расстояния. Еще лучше сконцентрировать на матовом стекле свет от дугового фонаря. Эта «светящаяся точка» должна быть расположена на главной оптической оси линзы (рис. 228, а).

Рис. 228. Экспериментальное изучение сферической аберрации: а) линза, на которую падает широкий пучок, дает расплывчатое изображение; б) центральная зона линзы дает хорошее резкое изображение

С помощью указанной линзы, на которую падают широкие световые пучки, не удается получить резкое изображение источника. Как бы мы ни перемещали экран 4, на нем получается довольно расплывчатое изображение. Но если ограничить пучки, падающие на линзу, поставив перед ней кусок картона 5 с небольшим отверстием против центральной части (рис. 228, б), то изображение значительно улучшится: можно найти такое положение экрана 4, что изображение источника на нем будет достаточно резким. Это наблюдение вполне согласуется с тем, что нам известно относительно изображения, получаемого в линзе с помощью узких приосевых пучков (ср. §89).

Рис. 229. Экран с отверстиями для изучения сферической аберрации

Заменим теперь картон с центральным отверстием куском картона с небольшими отверстиями, расположенными вдоль диаметра линзы (рис. 229). Ход лучей, проходящих через эти отверстия, можно проследить, если слегка задымить воздух за линзой. Мы обнаружим, что лучи, проходящие через отверстия, расположенные на различном расстоянии от центра линзы, пересекаются в разных точках: чем дальше от оси линзы выходит луч, тем сильнее он преломляется и тем ближе к линзе находится точка его пресечения с осью.

Таким образом, наши опыты показывают, что лучи, проходящие через отдельные зоны линзы, расположенные на разных расстояниях от оси, дают изображения источника, лежащие на разных расстояниях от линзы. При данном положении экрана разные зоны линзы дадут на нем: одни - более резкие, другие - более расплывчатые изображения источника, которые сольются в светлый кружок. В результате линза большого диаметра дает изображение точечного источника не в виде точки, а в виде расплывчатого светлого пятнышка.

Итак, при использовании широких световых пучков мы не получаем точечного изображения даже в том случае, когда источник расположен на главной оси. Эта погрешность оптических систем называется сферической аберрацией.

Рис. 230. Возникновение сферической аберрации. Лучи, выходящие из линзы на разной высоте над осью, дают изображения точки в разных точках

Для простых отрицательных линз благодаря сферической аберрации фокусное расстояние лучей, проходящих через центральную зону линзы, также будет более значительным, чем для лучей, проходящих через периферическую зону. Другими словами, параллельный пучок, проходя через центральную зону рассеивающей линзы, становится менее расходящимся, чем пучок, идущий через наружные зоны. Заставив свет после собирающей линзы пройти через рассеивающую, мы увеличим фокусное расстояние. Это увеличение будет, однако, менее значительным для центральных лучей, чем для лучей периферических (рис. 231).

Рис. 231. Сферическая аберрация: а) в собирающей линзе; б) в рассеивающей линзе

Таким образом, более длинное фокусное расстояние собирающей линзы, соответствующее центральным лучам, увеличится в меньшей степени, чем более короткое фокусное расстояние периферических лучей. Следовательно, рассеивающая линза благодаря своей сферической аберрации выравнивает различие фокусных расстояний центральных и периферических лучей, обусловленное сферической аберрацией собирающей линзы. Правильно рассчитав комбинацию собирающей и рассеивающей линз, мы можем столь полно осуществить это выравнивание, что сферическая аберрация системы из двух линз: будет практически сведена к нулю (рис 232). Обычно обе простые линзы склеиваются (рис. 233).

Рис. 232. Исправление сферической аберрации путем комбинирования собирающей и рассеивающей линз

Рис. 233. Склеенный астрономический объектив, исправленный на сферическую аберрацию

Из сказанного видно, что уничтожение сферической аберрации осуществляется комбинацией двух частей системы сферические аберрации которых взаимно компенсируют друг друга. Аналогичным образом мы поступаем и при исправлении других недостатков системы.

Примером оптической системы с устраненной сферической аберрацией могут служить астрономические объективы. Если звезда находится на оси объектива, то ее изображение практически не искажено аберрацией, хотя диаметр объектива может достигать нескольких десятков сантиметров.