«Анатомо-физиологические и возрастные особенности спинного мозга». Спинной мозг – medulla spinalis

Глава 2

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ СПИННОГО МОЗГА. ВОЗМОЖНОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПРИ ПОВРЕЖДЕНИИ СПИННОГО МОЗГА

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ СПИННОГО МОЗГА

От спинномозгового нерва отходит ветвь к твердой оболочке спинного мозга - r. meningeus, которая содержит в своем составе и симпатические волокна. R. meningeus носит еще название возвратного нерва, так как она возвращается в позвоночный канал через межпозвоночное отверстие. Здесь нерв делится на две ветви: более крупную, идущую по передней стенке канала в восходящем направлении, и более мелкую, идущую в нисходящем направлении. Каждая из них соединяется как с ветвями соседних ветвей мозговой оболочки, так и с ветвями противоположной стороны. В результате этого образуется переднее сплетение мозговой оболочки, plexus meningeus anterior. Соответственно, при соединении на задней стенке позвоночного канала образуется заднее сплетение мозговой оболочки, plexus meningeus posterior. Эти сплетения посылают веточки к надкостнице, костям и оболочкам спинного мозга, венозным позвоночным сплетениям, а также к артериям позвоночного канала (15,16,18,22).

Твердая мозговая оболочка состоит из двух листков. Наружный листок плотно прилегает к костям черепа и позвоночника и является их надкостницей. Внутренний листок, или собственно твердая мозговая оболочка, представляет собой плотную фиброзную пластину. В позвоночном канале между двумя листками имеется рыхлая живая ткань, богатая венозной сетью (эпидуральное пространство) (15–18,22).

Паутинная оболочка выстилает внутреннюю поверхность твердой оболочки и соединена рядом тяжей с мягкой мозговой оболочкой. Мягкая мозговая оболочка плотно прилегает и срастается с поверхностью головного и спинного мозга. Пространство между паутинной и мягкой мозговой оболочками называется субарахноидальным, в нем циркулирует большая часть цереброспинальной жидкости. Цереброспинальная жидкость принимает участие в питании и обмене веществ нервной ткани и оттекает в венозные сплетения в эпидуральном пространстве (3,9,11,12,15–18,22). Эти анатомические особенности строения спинного мозга позволяют предположить возможность проведения информации при анатомическом повреждении, о чем будет сказано ниже.

НЕВРОЛОГИЧЕСКИЕ АСПЕКТЫ

При травме спинного мозга наблюдается локальное повреждение восходящих и нисходящих трактов - путей проведения информации с зон рецепции и в эти зоны. В неврологии эти патологические явления называются сегментарным уровнем поражения. Морфологически сегментарный уровень поражения характеризуется разрушением тел нейронов и их восходящих и нисходящих отростков, из которых слагаются проводящие пути спинного мозга (5,14,16).

А.В. Триумфов (16) отмечает, что каждая мышца и каждый дерматомер иннервируются двигательными и чувствительными волокнами не одного сегмента, а по меньшей мере еще 2–3 соседних сегментов. Поэтому при фактическом поражении 1–2 сегментов заметных расстройств обычно не наступает. При сегментарных чувствительных расстройствах зона анестезии всегда меньше, чем она должна была бы быть соответственно числу пораженных сегментов. Граничащие с очагом неповрежденные верхний и нижний сегменты уменьшают зону анестезии своими заходящими в нее волокнами (4,14.16,18).

Вышеизложенное относится к кожной зоне рецепции.

Рецепторные окончания нервов от соответствующих сегментов расположены не только в коже, но также в надкостнице и твердой мозговой оболочке. Эти зоны рецепции также перекрываются рецепторными окончаниями двух-трех ниже- и вышележащих сегментов спинного мозга. Информация, поступающая из этих зон при компрессии, может восприниматься как проецируемая боль, то есть как информация, поступающая из зоны соответствующего дерматомиотома (6,8,9,14,16,19,20). Аналогично проецируемой боли возникают любые другие проецируемые ощущения.

Учитывая вышеизложенные особенности строения оболочек спинного мозга и их иннервацию, очевидной становится возможность передачи импульсов в виде «перескока» через пораженный сегмент по сохранившимся передним и задним сплетениям и нервам твердой мозговой оболочки. В коре головного мозга сам «перескок» не анализируется. Ощущения при небольших поражениях сегментов воспринимаются так же, как при сохранившихся сегментах - это так называемые проецируемые ощущения (19). Интенсивность ощущений может быть искажена из-за деформации оболочек, особенно твердой мозговой оболочки. Этим объясняется наличие гиперпатий и гиперестезий при травмах позвоночного столба и спинного мозга (4,6,9,14,16,19).

РОЛЬ ЛИКВОРА В ПЕРЕДАЧЕ ИНФОРМАЦИИ

В результате травмы в спиномозговом канале развиваются многочисленные спаечные процессы, нарушающие циркуляцию спинномозговой жидкости (3,9,14,16,17). Для нормального функционирования спинномозговых проводящих путей необходима адекватная циркуляция спинномозговой жидкости, участвующей в обменных процессах при проведении импульсов по этим путям. Спинномозговая жидкость является электролитом и проводником немодулированных электрических сигналов от сегментов ниже места поражения к сегментам выше места поражения и наоборот (9,14,16,18). Такой вид проведения немодулированной информации аналогичен проведению сигналов в оборванном телефонном кабеле, который соединяет АТС и абонента. Если оборванные концы кабеля опустить в электролит, то передача электрических сигналов с одного конца кабеля на другой становится возможной, но эта информация будет искажена и немодулирована. То есть при достаточно сильном сигнале с АТС телефон может зазвонить, но речь по нему будет невнятной или вообще не будет слышна.

При восстановлении адекватной циркуляции спинномозговой жидкости также становится возможным проведение немодулированной информации к дистальным отделам спинного мозга и от них - к мышечным группам левой и правой половин тела и соответствующим нижним конечностям.

Поступление мощного импульса от центральных отделов нервной системы через ликвор к дистальному отделу спинного мозга способно вызвать сокращение крупных мышечных групп, сгибание в коленном, тазобедренном суставах. При этом отсутствует возможность произвольного управления мелкими мышечными группами: сгибание, разгибание пальцев.

Вышеизложенное подтверждается тем, что при восстановлении функции нижних конечностей при параплегии, обусловленной анатомическим разрывом спинного мозга, наблюдаются вначале синкинезии в нижних конечностях - содружественное сгибание в коленных и тазобедренных суставах. Через некоторое время появляется возможность волевого управления крупными мышечными группами левой и правой конечностей раздельно, что объясняется регрессом дистрофических изменений в нервной ткани ниже места повреждения и восстановлением проводимости в крупных нервных проводниках. Возможность последующей частичной модуляции сигналов обусловлена анатомо-физиологической генетически детерминированной асимметрией левой и правой половин тела, уменьшением диаметра нервных волокон в дистальных отделах и их разветвлениями (5,8,9,12,14,15,18–20).

РОЛЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ В ПРОВЕДЕНИИ ИМПУЛЬСОВ ПРИ ПОВРЕЖДЕНИИ СПИННОГО МОЗГА

Учитывая, что ганглии симпатической нервной системы образуют паравертебральную цепочку и в составе спинномозговых нервов входят в боковые рога спинного мозга, а также в состав менингеальных ветвей (3,6,8,14,15,18,20,22), становится понятной возможность проведения импульсов в обход пораженных сегментов по волокнам симпатической нервной системы. При применении способов интенсивной реабилитации в первые же дни наблюдается потепление тела и конечностей ниже перерыва спинного мозга, увеличение кровообращения, появление пульсации крупных артерий там, где ее раньше не было. Иногда отмечается гипергидроз, красный стойкий дермографизм и другие проявления, свидетельствующие о восстановлении функции вегетативной нервной системы ниже места повреждения спинного мозга. С этого момента становится возможным восстановление проводимости за счет компенсаторных механизмов в обход пораженного участка спинного мозга. Без появления признаков восстановления функций вегетативной нервной системы нельзя пытаться восстанавливать функции поперечнополосатой мускулатуры (5), так как это приведет к усилению дистрофических проявлений.

РОЛЬ МЫШЕЧНОЙ ТКАНИ В ПРОВЕДЕНИИ ИНФОРМАЦИИ ПРИ АНАТОМИЧЕСКИХ ПОВРЕЖДЕНИЯХ СПИННОГО МОЗГА

Поперечнополосатая мускулатура, имеющая две и более точки фиксации на разноименных костях скелета, иннервируется из различных сегментов спинного мозга (11,12,15,16,20,22). Повреждение какого-либо сегмента может снизить функцию поперечнополосатой мускулатуры (парез) вплоть до остановки мышечных сокращений (паралич) (7,9,14,16,21).

При спинальной травме после периода спинального шока восстанавливается спинальный автоматизм, что свидетельствует о сохранении сухожильных органов и мышечных веретен, рецепторов, реагирующих на изменение длины и напряжения мышц (1,3,6,14,16,19,20). Такой вид рецепции также может принимать участие в передаче импульсов при поражении сегментов. Элементарная рефлекторная дуга замыкается на уровне одного сегмента (2,6,10,14). Сухожильные органы различных мышц будут возбуждаться при сокращении мышц, имеющих те же точки фиксации, но получающих иннервацию от сохраненных сегментов (4,6,7,10,14,16,21). Восстановление функции верхних конечностей при травмах шейного отдела позвоночника с повреждением спинного мозга является примером такого вида передачи информации (14,16).

В сознании больного такое восстановление двигательной активности воспринимается одинаково как до травмы, так и после травмы, потому что точки фиксации мышц, получающих иннервацию из сегментов выше места повреждения, и мышц, получающих иннервацию из сегментов ниже места поражения, в зонах анализа в коре головного мозга практически совпадают (4,6,10–12,14,16). При достаточном натяжении сухожилий непарализованных мышц будут натягиваться сухожилия парализованных мышц (16,19,20,22). Это пассивное натяжение будет возбуждать сухожильные органы парализованных мышц. Сигналы с этих органов будут поступать по чувствительным проводникам в межпозвоночные отверстия ниже места поражения. Через нервы твердой мозговой оболочки и другие коллатеральные пути проведения импульсы будут «перескакивать» через пораженные сегменты, о чем упоминалось выше. Возможность пассивного возбуждения сухожильных рецепторов лежит в основе техники проприоцептивного проторения, о которой будет сказано далее.

ЭФАПТИЧЕСКАЯ ПЕРЕДАЧА

У больных с травмой спинного мозга возможна также эфаптическая передача возбуждения с аксонов нейронов ниже места поражения на аксоны нейронов выше места поражения (1,7,8,9,14,16,19). Эфаптическая передача возможна только на демиелинезированых нервных волокнах (19). При повреждениях спинного мозга наблюдается демиелинезация нервных волокон вследствие дистрофических явлений во всех органах и тканях, расположенных ниже места поражения (1,3,5,8,9). Импульсы, проходящие по одним нервным волокнам и сегментам ниже перерыва, индуцируют возбуждение мембран других нервных волокон, расположенных параллельно, к сегментам выше места поражения (19). Больной при этом испытывает аномальные ощущения - парестезии. Могут также развиваться невралгия, каузалгия, неврогенные боли, часто наблюдаемые у спинальных больных. Межаксональные помехи могут быть также следствием повышенной возбудимости аксонов. Эфаптическая передача, возникающая в первые дни интенсивной реабилитации, носит характер компенсаторной реакции и играет положительную роль при восстановлении функций (2,3,4,8,9,18,19).

Таким образом, в организме человека имеется возможность проведения импульсов, минуя пораженные сегменты, путем «перескока» по морфологическим субстратам с налагающимися рецепторными полями. (На использовании этого явления основан «принцип замены» в интенсивной реабилитации). В первую очередь это субстраты, целостность которых не нарушена:

2) твердая мозговая оболочка,

3) вегетативная нервная система,

4) рецепторный аппарат мышц.

Также возможно компенсаторное проведение импульсов:

а) в сохранившихся волокнах на уровне поражения сегментов;

б) по сохранившейся паутинной и мягкой мозговой оболочке;

в) отдельно следует отметить возможность проведения импульсов по спинно-мозговой жидкости, являющейся электролитом;

г) проведение импульсов посредством эфаптической передачи.

ЛИТЕРАТУРА

1. Аничков С.В., Заводская И.С. и др. Нейрогенные дистрофии и их фармакотерапия. - Л.: Медицина, 1969.

2. Анохин П.К. Биология и нейрофизиология условного рефлекса. - М.: Медицина,1968.

3. Бергер Э.Н. Нейрогуморальные механизмы нарушения тканевой трофики. - Киев: Здоров"я, 1980.

4. Вальдман А.В., Игнатов Ю.Д. Центральные механизмы боли. - Л.: Наука, 1976.

5. Качесов В.А. Скоростная реабилитация пациентов с тетраплегией // Материалы Российского Национального конгресса «Человек и его здоровье. Травматология, ортопедия, протезирование, биомеханика, реабилитация инвалидов». - СПб: Тонэкс, 1998.

6. Костюк П.Г. Физиология центральной нервной системы. - Киев: Вища школа, 1977.

7. Макаров В.А., Тараканов О.П. Словарь-минимум физиологических терминов. - М.: Медицинская академия им. Сеченова, 1991.

8. Ноздрачев А.Д. Физиология вегетативной нервной системы. - Л.: Наука, 1983.

9. Окс С. Основы нейрофизиологии / Пер. с англ. - М.: Мир, 1969.

10. Павлов И.П. Полное собрание трудов. - М.-Л.: АН СССР, 1940–1949. Т. 1–5.

11. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина,1985.

12. Ромер А., Парсонс Т. Анатомия позвоночных / Пер. с англ. - М.: Мир, 1992.

13. Саркисов Д.С., Пальцев М.А., Хитров М.К. Общая патология человека. - М.: Медицина, 1995.

14. Саченко Б. И. Энциклопедия детского невролога. - Минск: Беларуская энцыклапедыя, 1993.

15. Синельников Р.Д. Атлас анатомии человека / Пер. с англ. - М.: Медицина, 1983.

16. Триумфов А.В. Топическая диагностика заболеваний нервной системы. - М.: МЕДпресс, 1997.

17. Трошин В.Д. Эпидуральное введение лекарственных веществ в неврологической практике. - Горький,1974.

18. Шаде Дж., Форд Д. Основы неврологии. - М.: Мир, 1976.

19. Шмидт Р., Тевс Г. Физиология человека / Пер. с англ. - М.: Мир, 1996.

20. Шмидт-Ниельсон К. Физиология животных / Пер. с англ. - М.: Мир, 1982.

21. Юмашев Г.С., Фурман М.Е. Остеохондрозы позвоночника. - М.: Медицина, 1984.

22. Rohen J.W., Yokochi C. Human Anatomy. - Schattauer, Germany, 1994.

Спинной мозг — это важнейший элемент нервной системы, расположенный внутри позвоночного столба. Анатомически верхнее окончание спинного мозга соединено с головным мозгом, обеспечивая его периферическую чувствительность, а на другом конце имеется спинномозговой конус, знаменующий окончания этой структуры.

Спинной мозг находится в позвоночном канале, который надежно защищает его от внешних повреждений, а кроме того, дает возможность нормального стабильного кровоснабжения всех тканей спинного мозга по всей его протяженности.

Анатомическое строение

Спинной мозг является едва ли не самой древней нервной формацией, присущей всем позвоночным животным. Анатомия и физиология спинного мозга позволяют не только обеспечить иннервацию всего тела, но и устойчивость и защищенность этого элемента нервной системы. У людей позвоночник имеет массу особенностей, которые отличают его от всех других позвоночных существ, живущих на планете, что во многом связано с процессами эволюции и приобретения возможности прямохождения.

У взрослых мужчин длина спинного мозга составляет около 45 см, в то время как у женщин длина позвоночника в среднем оставляет 41 см. Средняя масса спинного мозга взрослого человека колеблется в пределах от 34 до 38 г, что составляет примерно 2% от общей массы головного мозга.

Анатомия и физиология спинного мозга отличаются сложной структурой, поэтому любое повреждение имеет системные последствия. Анатомия спинного мозга включает в себя значительное количество элементов, обеспечивающих функцию этой нервной формации. Стоит отметить, что, несмотря на то что головной и спинной мозг являются условно разными элементами нервной системы человека, все же нужно отметить, что граница между спинным и головным мозгом, проходящая на уровне пирамидных волокон, является очень условной. На самом деле, спинной и головной мозг являются цельной структурой, поэтому очень сложно их рассматривать по отдельности.

Спинной мозг внутри имеет полый канал, который принято называть центральным каналом. Пространство, которое имеется между оболочками спинного мозга, между белым и серым веществом заполнено спинномозговой жидкостью, которая во врачебной практике известна как ликвор. Структурно орган ЦНС в разрезе имеет следующие части и строение:

  • белое вещество;
  • серое вещество;
  • задний корешок;
  • нервные волокна;
  • передний корешок;
  • ганглий.

Рассматривая анатомические особенности спинного мозга, необходимо отметить довольно мощную защитную систему, которая не заканчивается на уровне позвоночника. Спинной мозг имеет собственную защиту, состоящую сразу из 3 оболочек, которая хоть и выглядит уязвимо, но все же обеспечивает сохранение не только всей структуры от механических повреждений, но и различных патогенных организмов. Орган ЦНС покрыт 3 оболочками, имеющими следующие названия:

  • мягкая оболочка;
  • паутинная оболочка;
  • твердая оболочка.

Пространство между самой верхней твердой оболочкой и твердыми костно-хрящевыми структурами позвоночника, окружающими спинномозговой канал, заполнено кровеносными сосудами и жировой тканью, что способствует сохранению целостности нейронов при движении, падениях и других потенциально опасных ситуациях.

При поперечном сечении срезы, взятые в разных частях столба, позволяют выявить неоднородность спинного мозга в разных отделах позвоночника. Стоит заметить, что, рассматривая анатомические особенности, сразу можно отметить наличие некой сегментарности, сопоставимой со структурой позвонков. Анатомия спинного мозга человека имеет одинаковое деление на сегменты, как и весь позвоночник. Выделяют следующие анатомические части:

  • шейную;
  • грудную;
  • поясничную;
  • крестцовую;
  • копчиковую.

Соотнесение той или иной части позвоночника с тем или иным сегментом спинного мозга зависит далеко не всегда от расположения сегмента. Принципом определения того или иного сегмента к той или иной части является наличие корешковых ответвлений в том или ином отделе позвоночника.

В шейной части спинной мозг человека имеет 8 сегментов, в грудной — 12, на поясничную и крестцовую части приходится по 5 сегментов, в то время на копчиковую — 1 сегмент. Так как копчик является рудиментарным хвостом, нередки анатомические аномалии в этой области, при которых спинной мозг в данной части находится не в одном сегменте, а в трех. В этих случаях у человека имеет место большее количество спинных корешков.

В случае если отсутствуют анатомические аномалии развития, у взрослого человека от спинного мозга отходят ровно 62 корешка, причем — 31 по одну сторону позвоночного столба и 31 по другую. По всей длине спинной мозг имеет неоднородную толщину.

Помимо естественно утолщения в области соединения головного мозга со спинным, а кроме того, естественного снижения толщины в области копчика, также выделяются утолщения в области шейного отдела и пояснично-крестцового сочленения.

Основные физиологические функции

Каждый из элементов спинного мозга выполняет свои физиологические функции и имеет свои анатомические особенности. Рассмотрение физиологических особенностей взаимодействия разных элементов лучше всего начинать со спинномозговой жидкости.

Спинномозговая жидкость, известная как ликвор, выполняет ряд крайне важных функций, поддерживающих жизнедеятельность всех элементов спинного мозга. Ликвор выполняет следующие физиологические функции:

  • поддержание соматического давления;
  • поддержание солевого баланса;
  • защита нейронов спинного мозга от травматического повреждения;
  • создание питательной среды.

Спинные нервы напрямую связны с нервными окончаниями, обеспечивающими иннервацию всех тканей тела. Контроль за рефлекторными и проводниковыми функциями осуществляется разными видами нейронов, входящими в состав спинного мозга. Так как нейроновая организация крайне сложна, была составлена классификация физиологических функций тех или иных классов нервных волокон. Классификация проводится по следующим признакам:

  1. По отделу нервной системы. К этому классу относятся нейроны вегетативной и соматической нервной системы.
  2. По назначению. Все нейроны, располагающиеся в спинном мозге, подразделяются на вставочные, ассоциативные, афферентные эфферентные.
  3. По способу влияния. Все нейроны подразделяются на возбуждающие и тормозящие.

При рассмотрении физиологических особенностей нейронов приходится признать, что каждый класс нейронов находится в тесном взаимодействии с остальными классами. Итак, как уже отмечалось, существует 4 основных типа нейронов по их назначению, каждый из которых выполняет свою функцию в общей системе и взаимодействует с другими типами нейронов.

  1. Вставочные. Нейроны, относящиеся к этому классу, являются промежуточными и служат для обеспечения взаимодействия между афферентными и эфферентными нейронами, а также со стволом мозга, через который передаются импульсы в головной мозг человека.
  2. Ассоциативные. Нейроны, принадлежащие к этому виду, являются самостоятельным операционным аппаратом, обеспечивающим взаимодействие между разными сегментами, внутри имеющихся . Таким образом, ассоциативные нейроны являются управляющими для таких параметров, как тонус мышц, координация позиции тела, движений и т. д.
  3. Эфферентные. Нейроны, относящиеся к классу эфферентных, выполняют соматические функции, так как основной их задачей является иннервация основных органов рабочей группы, то есть скелетных мышц.
  4. Афферентные. Нейроны, относящиеся к этой группе, выполняют соматические функции, но при этом обеспечивают иннервацию сухожилий, кожных рецепторов, а кроме того, обеспечивают симпатическое взаимодействие в эфферентных и вставочных нейронах. Большая часть афферентных нейронов находится в ганглиях спинальных нервов.

Разные виды нейронов образуют целые пути, которые служат поддержанию связи спинного и головного мозга человека со всеми тканями тела.

Для того чтобы понять, как именно происходит передача импульсов, следует рассмотреть анатомические и физиологические особенности основных элементов, то есть серое и белое вещество.

Серое вещество

Серое вещество является самым функциональным. При разрезе столба видно, что серое вещество располагается внутри белого и имеет вид бабочки. В самом центре серого вещества располагается центральный канал, по которому наблюдается циркуляция ликвора, обеспечивающего его питание и поддержание баланса. При детальном рассмотрении можно выделить 3 основных отдела, каждый из которых имеет свои особые нейроны, обеспечивающие те или иные функции:

  1. Передняя область. В этой области содержатся двигательные нейроны.
  2. Задняя область. Задняя область серого вещества представляет собой рогообразное ответвление, которое имеет чувствительные нейроны.
  3. Боковая область. Эта часть серого вещества получила название боковых рогов, так как именно эта часть сильно разветвляется и дает начало спинальным корешкам. Нейроны боковых рогов дают начало вегетативной нервной системе, а также обеспечивают иннервацию всех внутренних органов и грудной клетки, брюшной полости и органов малого таза.

Передние и задние области не имеют четких граней и буквально сливаются друг с другом, образуя сложный спинномозговой нерв.

Помимо всего прочего, корешки, отходящие от серого вещества, являются составными частями передних корешков, другой составляющей которых являются белое вещество и другие нервные волокна.

Белое вещество

Белое вещество буквально обволакивает серое вещество. Масса белого вещества примерно в 12 раз превышает массу серого вещества. Борозды, имеющиеся в спинном мозге, служат для симметричного разделения белого вещества на 3 канатика. Каждый из канатиков обеспечивает свои физиологические функции в структуре спинного мозга и имеет свои анатомические особенности. Канатики белого вещества получили следующие названия:

  1. Задний канатик белого вещества.
  2. Передний канатик белого вещества.
  3. Боковой канатик белого вещества.

Каждый из этих канатиков включается в себя сочетания нервных волокон, образующих пучки и пути, необходимые для регулирования и передачи тех или иных нервных импульсов.

Передний канатик белого вещества включается в себя следующие пути:

  • передний корково-спинномозговой (пирамидный) путь;
  • ретикулярно-спинномозговой путь;
  • передний спиноталамический путь;
  • покрышечно-спинномозговой путь;
  • задний продольный пучок;
  • преддверно-спинномозговой путь.

Задний канатик белого вещества включается в себя следующие пути:

  • медиальный спинномозговой путь;
  • клиновидный пучок;
  • тонкий пучок.

Боковой канатик белого вещества включается в себя следующие пути:

  • красноядерно-спинномозговой путь;
  • латеральный корково-спинномозговой (пирамидный) путь;
  • задний спинно-мозжечковый путь;
  • передний спинно-мозжечковый путь;
  • латеральный спинно-таламический путь.

Существуют и другие пути проведения нервных импульсов разной направленности, но в настоящее время далеко не все атомические и физиологические особенности спинного мозга изучены достаточно хорошо, так как эта система является не менее сложной, чем головной мозг человека.

Особенности кровоснабжения

Спинной мозг является важнейшей частью нервной системы, поэтому этот орган имеет очень мощную и разветвленную систему кровоснабжения, обеспечивающую его всеми питательными веществами и кислородом. обеспечивается за счет следующих крупных кровеносных сосудов:

  • позвоночная артерия, берущая свое начало в подключичной артерии;
  • ответвление глубокой шейной артерии;
  • латеральные крестцовые артерии;
  • межреберная поясничная артерия;
  • передняя спинномозговая артерия;
  • задние спинномозговые артерии (2 шт.).

Кроме того, спинной мозг буквально обволакивает сеть мелких вен и капилляров, способствующих непрерывному питанию нейронов. При разрезе любого сразу можно отметить наличие разветвленной сети мелких и крупных кровеносных сосудов. Нервные корешки имеют сопровождающие их кровеносные артериальные вены, причем каждый корешок имеет собственное кровеносное ответвление.

Кровоснабжение ветвей кровеносных сосудов берет свое начало из крупных артерий, обеспечивающих питание столба. Помимо всего прочего, кровеносные сосуды, питающие нейроны, питают и элементы позвоночного столба, таким образом, все эти структуры связаны единой кровеносной системой.

Возможность передачи информации при повреждении спинного мозга

Анатомо-физиологические особенности строения спинного мозга

Неврологические аспекты

Роль ликвора в передаче информации

Роль вегетативной нервной системы в проведении импульсов при повреждении

спинного мозга

Роль мышечной ткани в проведении информации при анатомических повреждениях

спинного мозга

Эфаптическая передача.

Глава 3. Реактивность организма и спинальная травма

Специфический ответ на неспецифический раздражитель

Специфический ответ эффекторов в норме

Специфический ответ при патологии

Глава 4. Дополнение к патогенезу спинальной травмы. Понятие о вертеброкостостернальном нейровисцеральном блоке

Понятие о вертеброкостостернальном нейровисцеральном блоке

Глава 5. Статистические данные об основных группах больных,

Прошедших интенсивную реабилитацию

Глава 6. Основные принципы интенсивной реабилитации больных с травмами позвоночника и спинного мозга

Глава 8. Тракционная ротационная манипуляционная технология (метод "генерализованной разблокировки")

Посегментарная передняя ротация позвоночника ("колесо")

Посегментарная боковая ротация позвоночника

Ошибки и осложнения. Показания и противопоказания

Техника проприоцептивного проторения для нижних конечностей (по В.А. Качесову)

Последовательность упражнений при тетраплегии

Контрактуры. Параличи и парезы отдельных мышечных групп

Принципы интенсивной ликвидации контрактур

Борьба с контрактурами в голеностопных суставах

Параличи и парезы мышц стопы

Борьба со спастическими судорожными проявлениями

Восстановление функции тазовых органов. Дефекация

Регуляция мочеиспускания

Баня и сауна

Солнечные и ультрафиолетовые ванны

Глава 9. Основные итоги интенсивной реабилитации у больных со спинальной травмой

Глава 10. Интенсивный реабилитационный процесс и регресс симптомов спинальной травмы

Нарушение функции вегетативной нервной системы

Восстановление функции вегетативной нервной системы

Особенности клинической картины мочекаменной болезни у больных с повреждением спинного мозга

Восстановление терморегуляции и гемодинамики

Трофические нарушения. Пролежни

Регенерация специализированных тканей на месте Рубцовых изменений

Регенерация костной ткани при применении методов интенсивной реабилитации

Пример регенерации костной ткани в области остеопороза при асептическом некрозе головки левого бедра (с применением морфоденситомстрического анализа)

Нарушение функций соматической нервной системы

Восстановление функций соматической нервной системы

Нарушение чувствительности

Восстановление чувствительности

Приложение 1. Критерии интенсивного реабилитационного процесса

Акустический феномен

Другие критерии реабилитации, устанавливаемые аускультативно

Визуальные критерии

Субъективные критерии реабилитации (со слов больного)

Некоторые феномены, эффекты, наблюдаемые при реабилитации

Приложение 2. Некоторые принципы деонтологии в реабилитологии

Заключение

Глава 1
К ВОПРОСУ О ТЕРМИНОЛОГИИ В РЕАБИЛИТОЛОГИИ

СТРУКТУРА И ФУНКЦИЯ.. 2

СЕКРЕЦИЯ.. 4

ПРОВОДИМОСТЬ - ПЕРЕДАЧА НЕРВНОГО ИМПУЛЬСА.. 4

ФУНКЦИЯ СОЕДИНИТЕЛЬНОЙ ТКАНИ.. 4

ЖИЗНЕСПОСОБНОСТЬ. ЖИЗНЕДЕЯТЕЛЬНОСТЬ. ЖИЗНЬ. СМЕРТЬ. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ. РЕГЕНЕРАЦИЯ.. 7

ОБРАТИМОСТЬ ДИСТРОФИЧЕСКИХ ИЗМЕНЕНИЙ.. 7

ОБРАТИМОСТЬ РУБЦОВЫХ ИЗМЕНЕНИЙ. РЕГЕНЕРАЦИЯ.. 8

НАРУШЕНИЕ ФУНКЦИИ. БОЛЬ. ПРИЧИННО-СЛЕДСТВЕННАЯ СВЯЗЬ. 11


СТРУКТУРА И ФУНКЦИЯ

Любая научная дисциплина базируется на четком понятийном аппарате. В реабилитологии одним из основных понятий является функция, так как восстановление функции является основной зада­чей реабилитологов. И хотя о единстве структуры и функции гово­рил еще Р. Декарт, до сих пор нет четкого определения, связывающе­го эти два понятия. Образно о структуре и функции высказался изве­стный терапевт В. Х. Василенко: "Функция без структуры немысли­ма, а структура без функции бессмысленна" (16).

Обобщая дискуссионный материал, Д. С. Саркисов дает такое оп­ределение функции: "Биологическая функция – это деятельность, то есть изменение во времени и пространстве состояния или свойств тех или иных структур организма и его самого как целого" (16). Взаимо­отношения структуры и функции до сих пор являются предметом ос­трейших дискуссий.

Рассмотрим процессы сокращения и расслабления гладкомышечного волокна, как наиболее изученные на данном этапе развития науки. От способности мышечных клеток функционировать зависят, в конечном итоге, гомеостаз и жизнедеятельность всего организма (13, 15). Гладкая мускулатура широко представлена в человеческом организме циркулярными волокнами во всех трубчатых органах (со­суды, кишечник, бронхи, трахея, протоки желез и каналов, желчный и мочевой пузыри, зрачок). Актин, миозин или их комплекс содер­жатся во всех клетках и участвуют в осуществлении митоза, амебовидного движения, фагоцитоза, секреции (5, 13).

ФАЗА СОКРАЩЕНИЯ

Если мышечная клетка не сжата и не перерастянута, то это состо­яние называется состоянием покоя. В этот момент клеточная мемб­рана поляризована, а клетка готова совершить работу (3, 6, 24).

Механизм синаптической передачи в холинергических синапсах зак­лючается в том, что при выделении ацетилхолина (АХ) в нейромышечном синапсе возбуждается холинорецептор, происходит резкое измене­ние ионной проницаемости и возникает потенциал действия (ПД). В результате происходящей деполяризации мембраны изменяется элект­рическое поле, которое открывает натриевые каналы в мембране (12, 13, 17, 21). В клинической практике по изменению электромагнитно­го поля определяют специфическую функцию органа (ЭКГ, ЭЭГ и т.д.).

После возникновения потенциала действия (ПД) через короткий промежуток времени может произойти сокращение мышечного во­локна за счет движения актина и миозина внутриклеточных миофибрилл относительно друг друга. В момент возбуждения миофибриллы ее мембрана становится проницаемой для ионов кальция, кото­рый войдя в клетку, активирует миозин. В процессе сокращения важ­ную роль играет циклический гуанозинмонофосфат (цГМФ). Рецеп­торы, расположенные на внешней поверхности клетки, связываются с лигандами, что сопровождается активизацией мембранной олигоферментной системы – гуанилатциклазы, необходимой для модуля­ции цГМФ. Реакция идет в присутствии ионов кальция (12, 21).

Соответственно вводимому количеству ионов кальция будет рас­ход энергии макроэргов (ГТФ и креатин-фосфата). Сокращение и расслабление мышечных волокон осуществляется при участии миозиновой АТФазы, которая является бифункциональным ферментом и действует попеременно: то как Ca 2+ Mg 2+ K + АТФаза, то как K + Mg 2+ Ca 2+ –АТФаза (21).

Таким образом, проявление специфической функции клетки, в данном случае сокращения, обязательно сопровождается следующими процесса­ми: модуляцией цГМФ, выходом ионов калия из клетки, входом ионов натрия и кальция в клетку, гидролизом трифосфатов и выделением энер­гии. Резко возрастает потребление кислорода. Происходит деполяризация клеточной мембраны, затем возникновение ПД и, наконец, синтез актин-миозинового комплекса – собственно сокращение (3, 5, 6, 13, 14).

ОСТАНОВКА СОКРАЩЕНИЯ
(СИНТЕЗА АКТИН-МИОЗИНОВОГО КОМПЛЕКСА)

Циклический процесс сокращения и расслабления мышечного волокна включает остановку сокращения и расслабления. Эти со­стояния характеризуются прекращением гидролиза АТФ, ГТФ и дру­гих макроэргов за счет модуляции цАМФ и других механизмов, ко­торые инициируют каскад реакций, мгновенно выводящих продук­ты метаболизма (СО 2 , Н 2 О и др.), в результате чего не нарастает ме­таболический ацидоз (14, 21).

Модуляция циклических нуклеотидов цГМФ и цАМФ необходи­ма как энергетически выгодный процесс для активации ферментов, катализирующих каскад реакций, происходящих при сокращении и расслаблении с затратами энергии (12, 21).

ФАЗА РАССЛАБЛЕНИЯ
(РАСПАДА АКТИН-МИОЗИНОВОГО КОМПЛЕКСА)

После сокращения гладкомышечного волокна и наступления кон­трактуры происходит каскад биохимических реакций, ведущий к рас­паду актин-миозинового комплекса и расслаблению мышцы. Этот процесс начинается при возбуждении адренорецептора медиатором симпатином – смесью норадреналина и адреналина (13, 14, 17, 21). Адренорецептор, связанный через лигандный комплекс с аденилатциклазой, модулирует цАМФ. В этот момент снова действует универ­сальный фермент K + Mg 2+ Ca 2+ –АТФаза. Ионы кальция, натрия и хло­ра выводятся из клетки, выводятся также окончательные продукты метаболизма (СО 2 , Н 2 О и др.) (5, 21).

СОСТОЯНИЕ ПОКОЯ

Для мышц, находящихся в состоянии покоя и не расходующих энергию, характерен очень низкий уровень потребления кислорода. В этих условиях концентрация АТФ и ГТФ высокая, а АДФ и ГДФ – низкая. Активные центры молекул актина и миозина заблокирова­ны ионами калия (12, 13, 14, 17, 20, 22). Состояние покоя характеризу­ется наличием потенциальной энергии и готовности мышцы совер­шить работу, проявить функцию.

СЕКРЕЦИЯ

Если рассматривать секрецию как специфическую функцию, то она обеспечивается теми же процессами, что и мышечное сокраще­ние (табл. 1.1) (24), в том числе синтезом актин-миозинового комп­лекса (5, 13). Процесс секреции включает фазу синтеза (накопления) секрета и фазу собственно секреции – выделение секрета.


Похожая информация.


Экзаменационные вопросы:

1.7. Сегментарный аппарат спинного мозга: анатомия, физиология, симптомы поражения.

1.8. Проводящие пути спинного мозга: симптомы поражения.

1.9. Шейное утолщение спинного мозга: анатомия, физиология, симптомы поражения.

1.10. Синдромы поражения поперечника спинного мозга (синдром поперечного миелита, Броун-Секара).

1.11. Поясничное утолщение, конус спинного мозга, конский хвост: анатомия, физиология, симптомы поражения.

1.12. Продолговатый мозг: анатомия, физиология, симптомы поражения каудальной группы (IX, X, XII пар черепных нервов). Бульбарный и псевдобульбарный паралич.

1.15. Корковая иннервация двигательных ядер черепных нервов. Симптоматика поражения.

Практические навыки:

1. Сбор анамнеза у больных с заболеваниями нервной системы.

4. Исследование функции черепных нервов

Анатомо-физиологические особенности спинного мозга

Спинной мозг анатомически представляет собой цилиндрический тяж, расположенный в позвоночном канале, длиной 42-46 см (у взрослого).

1. Строение спинного мозга (на разных уровнях)

    В основе строения спинного мозга лежит сегментарный принцип (31-32 сегмента): шейные (C1-C8), грудные (Th1-Th12), поясничные (L1-L5), крестцовые (S1-S5) и копчиковые (Co1-Co2).Утолщения спинного мозга :шейное (C5-Th2, обеспечивает иннервацию верхних конечностей) ипоясничное (L1(2)-S1(2), обеспечивает иннервацию нижних конечностей). В связи с особой функциональной ролью (расположение сегментарного центра регуляции функции тазовых органов - см.занятие №2.) выделяютконус (S3-Co2).

    В связи с особенностями онтогенеза спинной мозг взрослого заканчивается на уровне LIIпозвонка, ниже этого уровня корешки формируютконский хвост (корешки сегментовL2-S5).

    Соотношение сегментов спинного мозга и позвонков (скелетотопия ): С1-С8 = С I -C VII ,Th1-Th12 =Th I -Th X ,L1-L5 =Th XI -Th XII ,S5-Co2 =L I -L II .

    Места выхода корешков : С1-С7 – над одноименным позвонком, С8 – под С VII , Th1-Co1 – под одноименным позвонком.

    Каждый сегмент спинного мозга имеет по две пары передних (двигательных) и задних (чувствительных) корешков. Каждый задний корешок спинного мозга имеет в своем составе спинальный ганглий. Передний и задний корешки каждой стороны сливаются, образуя спинномозговой нерв.

2. Строение спинного мозга (поперечный срез)

    Серое вещество СМ: расположено в центре спинного мозга и напоминает по форме бабочку. Правая и левая половины серого вещества спинного мозга соединены между собой тонким перешейком (срединное промежуточное вещество), в центре которого проходит отверстие центрального канала спинного мозга. Гистологически выделяют следующие слои: 1 - маргинальный; 2-3 - желатиновая субстанция; 4-6 - собственные ядра задних рогов; 7-8 - nucleus intermedius; 9 - двигательные мотонейроны передних рогов.

1) задние рога (колонны) СМ: телаIIнейронов путей поверхностной чувствительности и системы мозжечковой проприорецепции

2) боковые рога (колонны) СМ: сегментарные вегетативные эфферентные нейроны - симпатической (C8-L3) и парасимпатической (S2-S4) нервной системы.

3) передние рога (колонны) СМ: клетки двигательной (альфа-большие мотонейроны, тормозные клетки Реньшоу) и экстрапирамидной (альфа-малые мотонейроны, гамма-нейроны) системы.

    Белое вещество СМ: расположено по периферии спинного мозга, здесь проходят миелинизированные волокна, соединяющие сегменты спинного мозга между собой и с центрами головного мозга. В белом веществе спинного мозга различают задние, передние и боковые канатики.

1) задние канатики СМ: содержатвосходящие проводники глубокой чувствительности –медиальный (fasc.gracilis, тонкий, Голля, от нижних конечностей) илатеральный (fasc.cuneatus, клиновидный, Бурдаха, от верхних конечностей).

2) боковые канатики СМ: содержатнисходящие : 1)пирамидный (латеральный корково-спинномозговой путь), 2)красноядерно-спинномозговой (дорсолатеральная экстрапирамидная система); ивосходящие пути : 1)спинно-мозжечковые (вдоль латерального края боковых канатиков) - передний (Говерса) и задний (Флексига), 2)латеральный спиноталамический (латерально - температура, медиально - боль).

3) передние канатики СМ: содержатнисходящие : 1)передний пирамидный (пучок Тюрка, неперекрещенный), 2)вестибуло-спинномозговой (вентромедиальная экстрапирамидная система), 3)ретикуло-спинномозговой (вентромедиальная экстрапирамидная система); 4)оливо-спинномозговой , 5)покрышечно-спинномозговой ; ивосходящие пути : 1)передний спиноталамический (латерально - осязания, медиально - давление), 2)спинно-оливарный (проприоцептивный, к нижней оливе), 3)спинно-покрышечный (проприоцептивный, к четверохолмию).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Спинной мозг представляет собой длинный тяж. Он заполняет полость позвоночного канала и имеет сегментарное строение, соответствующее строению позвоночника.

В центре спинного мозга расположено серое вещество – скопление нервных клеток, окруженное белым веществом, образованным нервными волокнами.

Спинной мозг условно подразделяют на четыре отдела -шейный, грудной, поясничный и крестцовый, каждый из которых содержит несколько сегментов. От любого сегмента отходит пара спинномозговых нервов. Каждая пара нервов иннервирует определенный участок организма. Например, например нервы шейного и поясничного отделов иннервируют мышцы конечностей.

В спинном мозге замыкается огромное количество рефлекторных дуг, благодаря этому он может регулировать многие функции организма. В спинном мозге находятся рефлекторные центры мускулатуры туловища, конечностей и шеи. С их участием осуществляются сухожильные рефлексы в виде сокращения мышц (коленный, ахиллов рефлексы), рефлексы растяжения, сгибательные рефлексы, разные рефлексы, направленные на поддержание определенной позы. Рефлексы мочеиспускания и дефекации, рефлекторного набухания полового члена и извержения семени у мужчин связаны с функцией спинного мозга.

Спинной мозг осуществляет и проводниковую функцию. Нервные волокна, составляющие основную массу белого вещества, образуют проводящие пути спинного мозга. По этим путям устанавливается связь между различными частями ЦНС и проходит импульсация в восходящем и нисходящем направлениях. По этим путям поступает информация в вышележащие отделы мозга, от которых отходят импульсы, изменяющие деятельность скелетной мускулатуры и внутренних органов.

Спинной мозг содержит два утолщения: шейное и поясничное. Они начинают развиваться в первые годы жизни ребенка. Шейное утолщение регулирует движение верхних конечностей, поясничное - нижних. Их формирование зависит от двигательной активности ребенка.

Нервная импульсация из двигательных центров спинного мозга обеспечивает постоянное, чуть замедленное, напряжение все скелетной мускулатуры, называемое мышечным тонусом, что позволяет человеку вести нормальную двигательную деятельность.

Обеспечивая осуществление жизненно важных функций, спинной мозг развивается раньше, чем другие отделы нервной системы. Когда у эмбриона головной мозг находится на стадии мозговых пузырей, спинной мозг достигает уже значительных размеров. На ранних стадиях развития плода спинной мозг заполняет всю полость позвоночного канала. Затем позвоночный столб обгоняет в росте спинной мозг, и к моменту рождения он заканчивается на уровне третьего поясничного позвонка, к концу первого года он расположен на уровне 1-2 поясничного позвонка, так же как у взрослого. У новорожденных длина спинного мозга 14-16см, к 10 годам она удваивается.

У 5-6 месячного плода нервные клетки еще не развиты, однако к моменту рождения все нервные и глиальные клетки по своему развитию и строению не отличаются от клеток детей дошкольного возраста.

В толщину спинной мозг растет медленно. На поперечном срезе спинного мозга детей раннего возраста отмечается преобладание передних рогов над задними. Увеличение размеров нервных клеток спинного мозга наблюдается у детей в школьные годы.

Рефлекторная функция спинного мозга формируется уже в эмбриональном периоде. Раньше всех созревают спинномозговые рефлексы: сначала появляются обобщенные (генерализованные рефлексы), которые постепенно переходят в специализированные. Такие специализированные рефлексы, как рефлекс Бабинского (отведение большого пальца ноги при раздражении стопы) свидетельствуют о готовности ЦНС новорожденного к выполнению рефлекторных двигательных актов (шагания, плавания, почесывания)