Физиология спинного мозга. Рецепторные поля спинного мозга. Виды передаваемой информации. Основные центры спинного мозга. Рефлексы спинного мозга. Рефлекторные дуги простых и сложных соматических рефлексов спинного мозга. Анатомические и физиологические о


I. Структурно-функциональная характеристика.

Спинной мозг представляет собой тяж длиной 45 см у мужчин и около 42 см – у женщин. Он имеет сегментарное строение (31-33 сегмента). Каждый его сегмент связан с определенной частью тела. Спинной мозг включает пять отделов: шейный (С 1 -С 8), грудной (Th 1 -Th 12), поясничный (L 1 -L 5), крестцовый (S 1 -S 5) и копчиковый (Co 1 -Co 3). В процессе эволюции в спинном мозге сформировалось два утолщения: шейное (сегменты, иннервирующие верхние конечности) и пояснично-крестцовое (сегменты, иннервирующие нижние конечности) как результат повышенной нагрузки на эти отделы. В указанных утолщениях соматические нейроны наиболее крупные, их больше, в каждом корешке этих сегментов больше нервных волокон, они имеют наибольшую толщину. Общее количество нейронов спинного мозга – около 13 млн. Из них 3% - мотонейроны, 97% - вставочные нейроны, из которых часть нейронов, которые относятся к вегетативной нервной системе.

Классификация нейронов спинного мозга

Нейроны спинного мозга классифицируются по следующим признакам:

1) по отделу нервной системы (нейроны соматической и вегетативной нервной системы);

2) по назначению (эфферентные, афферентные, вставочные, ассоциативные);

3) по влиянию (возбуждающие и тормозные).

1. Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются эффекторными, поскольку они иннервируют непосредственно рабочие органы – эффекторы (скелетные мышцы), их называют мотонейронами. Различают ά- и γ- мотонейроны.

ά-Мотонейроны иннервируют экстрафузальные мышечные волокна (скелетная мускулатура), их аксоны характеризуются высокой скоростью проведения возбуждения – 70-120 м/с. ά-Мотонейроны подразделяют на две подгруппы: ά 1 – быстрые, иннервирующие быстрые белые мышечные волокна, их лабильность достигает 50 имп/с, и ά 2 – медленные, иннервирующие медленные красные мышечные волокна, их лабильность – 10-15 имп/с. Низкая лабильность ά-мотонейронов объясняется длительной следовой гиперполяризацией, сопровождающей ПД. На одном ά- мотонейроне насчитывается до 20 тысяч синапсов: от кожных рецепторов, проприорецепторов и нисходящих путей вышележащих отделов ЦНС.

γ-Мотонейроны рассеяны среди ά-мотонейронов, их активность регулируется нейронами вышележащих отделов ЦНС, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора). При изменении сократительной деятельности интрафузальных волокон под влиянием γ-мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует ά-мотонейроны мышцы-антагониста, тем самым регулируется тонус скелетных мышц и двигательные реакции. Эти нейроны обладают высокой лабильностью – до 200 имп/с, но их аксонам свойственна низкая скорость проведения возбуждения – 10-40 м/с.

2. Афферентные нейроны соматической нервной системы локализуются в спинальных ганглиях и ганглиях черепных нервов. Их отростки, проводящие афферентную импульсацию от мышечных, сухожильных и кожных рецепторов, вступают в соответствующие сегменты спинного мозга и образуют синаптические контакты либо непосредственно на ά-мотонейронах (возбуждающие синапсы), либо на вставочных нейронах.

3. Вставочные нейроны (промежуточные, интернейроны) устанавливают связь с мотонейронами спинного мозга, с чувствительными нейронами, а также обеспечивают связь спинного мозга с ядрами ствола мозга, а через них – с корой большого мозга. Интернейроны могут быть как возбуждающими, так и тормозными, имеющими высокую лабильность – до 1000 имп/с.

4. Нейроны вегетативной нервной системы. Нейроны симпатической нервной системы являются вставочными, расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга (C 8 -L 2). Эти нейроны фоновоактивны, частота разрядов 3-5 имп/с. Нейроны парасимпатического отдела нервной системы также вставочные, локализуются в сакральном отделе спинного мозга (S 2 -S 4) и также фоновоактивны.

5. Ассоциативные нейроны образуют собственный аппарат спинного мозга, который устанавливает связь между сегментами и внутри сегментов. Ассоциативный аппарат спинного мозга участвует в координации позы, тонуса мышц, движений.

Ретикулярная формация спинного мозга состоит из тонких перекладин серого вещества, пересекающихся в различных направлениях. Нейроны РФ имеют большое количество отростков. Ретикулярная формация обнаруживается на уровне шейных сегментов между передними и задними рогами, а на уровне верхнегрудных сегментов – между боковыми и задними рогами в белом веществе, примыкающем к серому.

Нервные центры спинного мозга

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры.

1. Центры симпатического отдела вегетативной нервной системы локализованы в следующих сегментах: центр зрачкового рефлекса – С 8 – Th 2 , регуляция деятельности сердца – Th 1 – Th 5 , слюноотделения – Th 2 – Th 4 , регуляция функции почек – Th 5 – L 3 . Кроме этого здесь имеются сегментарно расположенные центры, регулирующие функции потовых желез и сосудов, гладких мышц внутренних органов, центры пиломоторных рефлексов.

2. Парасимпатическую иннервацию получают из спинного мозга (S 2 – S 4) все органы малого таза: мочевой пузырь, часть толстой кишки ниже ее левого изгиба, половые органы. У мужчин парасимпатическая иннервация обеспечивает рефлекторный компонент эрекции, у женщин – сосудистые реакции клитора и влагалища.

3. Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (C 1 – C 4), диафрагмы (C 3 – C 5), верхних конечностей (C 5 – Th 2), туловища (Th 3 – L 1) и нижних конечностей (L 2 – S 5).

Повреждения определенных сегментов спинного мозга или его проводящих путей вызывают специфические двигательные нарушения и расстройства чувствительности.

Каждый сегмент спинного мозга участвует в чувствительной иннервации трех дерматомов. Имеется дублирование и двигательной иннервации скелетных мышц, что повышает надежность их деятельности.

На рисунке показана иннервация метамеров (дерматомов) тела сегментами мозга: С – метамеры, иннервируемые шейными, Th – грудными, L – поясничными. S – крестцовыми сегментами спинного мозга, F – черепно-мозговыми нервами.

II. Функции спинного мозга – проводниковая и рефлекторная.

Проводниковая функция

Проводниковая функция спинного мозга осуществляется с помощью нисходящих и восходящих проводящих путей.

Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляется через передние корешки (закон Белла – Мажанди).

Каждый корешок представляет собой множество нервных волокон.

Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов:

1) от кожных рецепторов (болевых, температурных, прикосновения, давления, вибрации);

2) от проприорецепторов (мышечных - мышечных веретен, сухожильных – рецепторов Гольджи, надкостницы и оболочек суставов);

3) от рецепторов внутренних органов – висцерорецепторов (механо- и хеморецепторов).

Медиатором первичных афферентных нейронов, локализующихся в спинальных ганглиях, является, по-видимому, субстанция Р.

Значение афферентной импульсации, поступающей в спинной мозг, заключается в следующем:

1) участие в координационной деятельности ЦНС по управлению скелетной мускулатурой. При выключении афферентной импульсации от рабочего органа управление им становится несовершенным.

2) участие в процессах регуляции функций внутренних органов.

3) поддержание тонуса ЦНС; при выключении афферентной импульсации наступает уменьшение суммарной тонической активности ЦНС.

4) несет информацию об изменениях окружающей среды. Основные проводящие пути спинного мозга приведены в таблице 1.

Таблица 1. Основные проводящие пути спинного мозга

Восходящие (чувствительные) пути

Физиологическое значение

Клиновидный пучок (Бурдаха) проходит в задних столбах, импуьсация поступает в кору

Осознаваемая проприорецептивная импульсация от нижней части туловища и ног

Тонкий пучок (Голля), проходит в задних столбах, импульсация поступает в кору

Осознаваемая проприорецептивная импульсация от верхней части туловища и рук

Задний спинно-мозжечковый (Флексига)

Не осознаваемая проприорецептивная импульсация

Передний спинно-мозжечковый (Говерса)

Латеральный спиноталамический

Болевая и температурная чувствительность

Передний спиноталамический

Тактильная чувствительность, прикосновение, давление

Нисходящие (двигательные) пути

Физиологическое значение

Латеральный кортикоспинальный (пирамидный)

Импульсы к скелетным мышцам

Передний кортикоспинальный (пирамидный)

Руброспинальный (Монакова) проходит в боковых столбах

Импульсы, поддерживающие тонус скелетных мышц

Ретикулоспинальный, проходит в передних столбах

Импульсы, поддерживающие тонус скелетных мышц с помощью возбуждающих и тормозящих влияний на ά- и γ-мотонейроны, а также регулирующие состояние спинальных вегетативных центров

Вестибулоспинальный, проходит в передних столбах

Импульсы, обеспечивающие поддержание позы и равновесия тела

Тектоспинальный, проходит в передних столбах

Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов (рефлексов четверохолмия)

III. Рефлексы спинного мозга

Спинной мозг выполняет рефлекторную соматическую и рефлекторную вегетативную функции.

Сила и длительность всех спинальных рефлексов увеличиваются при повторном раздражении, при увеличении площади раздражаемой рефлексогенной зоны вследствие суммации возбуждения, а также при увеличении силы стимула.

Соматические рефлексы спинного мозга по своей форме в основном являются сгибательными и разгибательными рефлексами сегментарного характера. Соматические спинальные рефлексы можно объединить в две группы по следующим признакам:

Во-первых, по рецепторам, раздражение которых вызывает рефлекс: а) проприоцептивные, б) висцероцептивные, в) кожные рефлексы. Рефлексы, возникающие с проприорецептров, участвуют в формировании акта ходьбы и регуляции мышечного тонуса. Висцерорецептивные (висцеромоторные) рефлексы возникают с рецепторов внутренних органов и проявляются в сокращении мышц брюшной стенки, грудной клетки и разгибателей спины. Возникновение висцеромоторных рефлексов связано с конвергенцией висцеральных и соматических нервных волокон к одним и тем же интернейронам спинного мозга.

Во-вторых, по органам:

а) рефлексы конечностей;

б) брюшные рефлексы;

в) яичковый рефлекс;

г) анальный рефлекс.

1. Рефлексы конечностей . Эту группу рефлексов в клинической практике исследуют наиболее часто.

Сгибательные рефлексы. Сгибательные рефлексы делятся на фазные и тонические.

Фазные рефлексы – это однократное сгибание конечности при однократном раздражении кожи или проприорецепторов. Одновременно с возбуждением мотонейронов мышц-сгибателей происходит реципрокное торможение мотонейронов мышц-разгибателей. Рефлексы, возникающие с рецепторов кожи, являются полисинаптическими, они имеют защитное значение. Рефлексы, возникающие с проприорецепторов, могут быть моносинаптическими и полисинаптическими. Фазные рефлексы с проприорецепторов участвуют в формировании акта ходьбы. По степени выраженности фазных сгибательных и разгибательных рефлексов определяют состояние возбудимости ЦНС и возможные ее нарушения.

В клинике исследуют следующие сгибательные фазные рефлексы: локтевой и ахиллов (проприоцептивные рефлексы) и подошвенный рефлекс (кожный). Локтевой рефлекс выражается в сгибании руки в локтевом суставе, возникает при ударе рефлекторным молоточком по сухожилию m. вiceps brachii (при вызове рефлекса рука должна быть слегка согнута в локтевом суставе), его дуга замыкается в 5-6-ом шейных сегментах спинного мозга (С 5 – С 6). Ахиллов рефлекс выражается в подошвенном сгибании стопы в результате сокращения трехглавой мышцы голени, возникает при ударе молоточком по ахиллову сухожилию, рефлекторная дуга замыкается на уровне крестцовых сегментов (S 1 – S 2). Подошвенный рефлекс – сгибание стопы и пальцев при штриховом раздражении подошвы, дуга рефлекса замыкается на уровне S 1 – S 2 .

Тонические сгибательные , а также разгибательные рефлексы возникают при длительном растяжении мышц, их главное назначение – поддержание позы. Тоническое сокращение скелетных мышц является фоновым для осуществления всех двигательных актов, осуществляемых с помощью фазических сокращений мышц.

Разгибательные рефлексы , как сгибательные, бывают фазными и тоническими, возникают с проприорецепторов мышц-разгибателей, являются моносинаптическими. Одновременно со сгибательным рефлексом возникает перекрестный разгибательный рефлекс другой конечности.

Фазные рефлексы возникают в ответ на однократное раздражение мышечных рецепторов. Например, при ударе по сухожилию четырехглавой мышцы бедра ниже коленной чашечки возникает коленный разгибательный рефлекс вследствие сокращения четырехглавой мышцы бедра. Во время разгибательного рефлекса мотонейроны мышц-сгибателей тормозятся с помощью вставочных тормозных клеток Реншоу (реципрокное торможение). Рефлекторная дуга коленного рефлекса замыкается во втором – четвертом поясничных сегментах (L 2 – L 4). Фазные разгибательные рефлексы участвуют в формировании ходьбы.

Тонические разгибательные рефлексы представляют собой длительное сокращение мышц-разгибателей при длительном растяжении сухожилий. Их роль – поддержание позы. В положении стоя тоническое сокращение мышц-разгибателей предотвращает сгибание нижних конечностей и обеспечивает сохранение вертикального положения. Тоническое сокращение мышц спины обеспечивает осанку человека. Тонические рефлексы на растяжение мышц (сгибателей и разгибателей) называют также миотатическими.

Рефлексы позы – перераспределение мышечного тонуса, возникающее при изменении положения тела или отдельных его частей. Рефлексы позы осуществляются с участием различных отделов ЦНС. На уровне спинного мозга замыкаются шейные позные рефлексы. Имеется две группы этих рефлексов – возникающие при наклоне и при повороте головы.

Первая группа шейных позных рефлексов существует только у животных и возникает при наклоне головы вниз (кпереди). При этом увеличивается тонус мышц-сгибателей передних конечностей и тонус мышц-разгибателей задних конечностей, в результате чего передние конечности сгибаются, а задние разгибаются. При наклоне головы вверх (кзади) возникают противоположные реакции – передние конечности разгибаются вследствие увеличения тонуса их мышц-разгибателей, а задние конечности сгибаются вследствие повышения тонуса их мышц-сгибателей. Эти рефлексы возникают с проприорецепторов мышц шеи и фасций, покрывающих шейный отдел позвоночника. В условиях естественного поведения они увеличивают животному шанс достать пищу, находящуюся выше или ниже уровня головы.

Рефлексы позы верхних конечностей у человека утрачены. Рефлексы нижних конечностей выражаются не в сгибании или разгибании, а в перераспределении мышечного тонуса, обеспечивающего сохранение естественной позы.

Вторая группа шейных позных рефлексов возникает с тех же рецепторов, но только при поворотах головы вправо или влево. При этом повышается тонус мышц-разгибателей обеих конечностей на стороне, куда повернута голова, и повышается тонус мышц-сгибателей на противоположной стороне. Рефлекс направлен на сохранение позы, которая может быть нарушена вследствие изменения положения центра тяжести после поворота головы. Центр тяжести смещается в сторону поворота головы – именно на этой стороне повышается тонус мышц-разгибателей обеих конечностей. Подобные рефлексы наблюдаются и у человека.

Ритмические рефлексы – многократное повторное сгибание и разгибание конечностей. Примерами могут служить чесательный и шагательный рефлексы.

2. Брюшные рефлексы (верхний, средний и нижний) проявляются при штриховом раздражении кожи живота. Выражаются в сокращении соответствующих участков мускулатуры стенки живота. Это защитные рефлексы. Для вызова верхнего брюшного рефлекса раздражение наносят параллельно нижним ребрам непосредственно под ними, дуга рефлекса замыкается на уровне грудных сегментов спинного мозга (Th 8 – Th 9). Средний брюшной рефлекс вызывают раздражением на уровне пупка (горизонтально), дуга рефлекса замыкается на уровне Th 9 – Th10. Для получения нижнего брюшного рефлекса раздражение наносят параллельно паховой складке (рядом с ней), дуга рефлекса замыкается на уровне Th 11 – Th 12 .

3. Кремастерный (яичковый) рефлекс заключается в сокращении m. сremaster и поднимании мошонки в ответ на штриховое раздражение верхней внутренней поверхности кожи бедра (кожный рефлекс), это также защитный рефлекс. Его дуга замыкается на уровне L 1 – L 2 .

4. Анальный рефлекс выражается в сокращении наружного сфинктера прямой кишки в ответ на штриховое раздражение или укол кожи вблизи заднего прохода, дуга рефлекса замыкается на уровне S 2 – S 5 .

Вегетативные рефлексы спинного мозга осуществляются в ответ на раздражение внутренних органов и заканчиваются сокращением гладкой мускулатуры этих органов. Вегетативные рефлексы имеют в спинном мозге свои центры, которые обеспечивают иннервацию сердца, почек, мочевого пузыря и т.д.

IV. Спинальный шок

Перерезка или травма спинного мозга вызывает явление, получившее название спинального шока. Спинальный шок выражается в резком падении возбудимости и угнетении деятельности всех рефлекторных центров спинного мозга, расположенных ниже места перерезки. Во время спинального шока раздражители, которые обычно вызывали рефлексы, оказываются недейственными. В то же время деятельность центров, расположенных выше перерезки, сохраняется. После перерезки исчезают не только скелетно-моторные рефлексы, но и вегетативные. Снижается кровяное давление, отсутствуют сосудистые рефлексы, акты дефекации и мочеиспускания.

Продолжительность шока различна у животных, стоящих на различных ступенях эволюционной лестницы. У лягушки шок продолжается 3-5 минут, у собаки – 7-10 дней, у обезьяны – больше 1 месяца, у человека – 4-5 месяцев. Когда шок проходит, рефлексы восстанавливаются. Причиной спинального шока является выключение вышерасположенных отделов головного мозга, оказывающих на спинной мозг активирующее влияние, в котором большая роль принадлежит ретикулярной формации ствола мозга.



Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность .

Нейроны спинного мозга образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию спинного мозга.

Задние рога содержат нейроны (интернейроны), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором-четвертом сегментах – парасимпатического.

В составе спинного мозга имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны – нейроны собственного аппарата спинного мозга, они устанавливают связи внутри и между сегментами.

Белое вещество спинного мозга образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные – рефлексы с одного внутреннего органа на другой, висцеро-мышечные – рефлексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу. Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела).

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов спинного мозга друг с другом или с вышележащими отделами ЦНС.

Конец работы -

Эта тема принадлежит разделу:

Лекция № 1

Нормальная физиология биологическая дисциплина изучающая.. функции целостного организма и отдельных физиологических систем например.. функции отдельных клеток и клеточных структур входящих в состав органов и тканей например роль миоцитов и..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиологическая характеристика возбудимых тканей
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раз

Законы раздражения возбудимых тканей
Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

Понятие о состоянии покоя и активности возбудимых тканей
О состоянии покояв возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный ур

Физико-химические механизмы возникновения потенциала покоя
Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает

Физико-химические механизмы возникновения потенциала действия
Потенциал действия– это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны

Высоковольтный пиковый потенциал (спайк)
Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз: 1) восходящей части – фазы деполяризации; 2) нисходящей части – фазы реполяриз

Физиология нервов и нервных волокон. Типы нервных волокон
Физиологические свойства нервных волокон: 1) возбудимость– способность приходить в состояние возбуждения в ответ на раздражение; 2) проводимость–

Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не об

Закон изолированного проведения возбуждения
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нер

Физические и физиологические свойства скелетных, сердечной и гладких мышц
По морфологическим признакам выделяют три группы мышц: 1) поперечно-полосатые мышцы (скелетные мышцы); 2) гладкие мышцы; 3) сердечную мышцу (или миокард).

Физиологические особенности гладких мышц
Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности: 1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоян

Электрохимический этап мышечного сокращения
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлени

Хемомеханический этап мышечного сокращения
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории: 1) ионы Ca запускают механизм мыш

ХР-ХЭ-ХР-ХЭ-ХР-ХЭ
ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины. Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический п

Норадреналин, изонорадреналин, адреналин, гистамин являются как тормозными, так и возбуждающими
АХ (ацетилхолин)является самым распространенным медиатором в ЦНС и в периферической нервной системе. Содержание АХ в различных структурах нервной системы неодинаково. С филогенетич

Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС
Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма

Нейрон. Оособенности строения, значение, виды
Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон. Нейрон – специализированная клетка, которая способна принимать, кодировать, передават

Рефлекторная дуга, ее компоненты, виды, функции
Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс– реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основ

Функциональные системы организма
Функциональная система– временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата. Полезный р

Координационная деятельность ЦНС
Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой. Функции КД: 1) обес

Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
Торможение– активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет. Торможе

Методы изучения ЦНС
Существуют два большие группы методов изучения ЦНС: 1) экспериментальный метод, который проводится на животных; 2) клинический метод, который применим к человеку. К числу

Структурные образования заднего мозга
1. V–XII пара черепных нервов. 2. Вестибулярные ядра. 3. Ядра ретикулярной формации. Основные функции заднего мозга проводниковая и рефлекторная. Через задний мо

Физиология промежуточного мозга
В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга. Таламус– парное образование, наиболее крупное скопление серог

Физиология ретикулярной формации и лимбической системы
Ретикулярная формация ствола мозга– скопление полиморфных нейронов по ходу ствола мозга. Физиологическая особенность нейронов ретикулярной формации: 1) самопроизв

Физиология коры больших полушарий
Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см2. Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, м

Совместная работа больших полушарий и их асимметрия
Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким обра

Анатомические свойства
1. Трехкомпонентное очаговое расположение нервных центров. Низший уровень симпатического отдела представлен боковыми рогами с VII шейного по III–IV поясничные позвонки, а парасимпатического – крест

Физиологические свойства
1. Особенности функционирования вегетативных ганглиев. Наличие феномена мультипликации (одновременного протекания двух противоположных процессов – дивергенции и конвергенции). Дивергенция – расхожд

Функции симпатической, парасимпатической и метсимпатической видов нервной системы
Симпатическая нервная системаосуществляет иннервацию всех органов и тканей (стимулирует работу сердца, увеличивает просвет дыхательных путей, тормозит секреторную, моторную и всасы

Общие представления об эндокринных железах
Железы внутренней секреции– специализированные органы, не имеющие выводных протоков и выделяющие секрет в кровь, церебральную жидкость, лимфу через межклеточные щели. Эндо

Свойства гормонов, механизм их действия
Выделяют три основных свойства гормонов: 1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования); 2) строгую с

Синтез, секреция и выделение гормонов из организма
Биосинтез гормонов– цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокр

Регуляция деятельности эндокринных желез
Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимическ

Гормоны передней доли гипофиза
Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – с

Гормоны средней и задней долей гипофиза
В средней доле гипофиза вырабатывается гормон меланотропин(интермедин), который оказывает влияние на пигментный обмен. Задняя доля гипофиза тесно связана с супраоптическим

Гипоталамическая регуляция образования гормонов гипофиза
Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статина

Гормоны эпифиза, тимуса, паращитовидных желез
Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения: 1) мелатонин(принимает участие в регуляци

Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы
Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий бело

Гормоны поджелудочной железы. Нарушение функции поджелудочной железы
Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают

Нарушение функции поджелудочной железы
Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), поли

Гормоны надпочечников. Глюкокортикоиды
Надпочечники – парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Физиологическое значение глюкокортикоидов
Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина

Регуляция образования глюкокортикоидов
Важную роль в образовании глюкокортикоидов играет кортикотропин передней доли гипофиза. Это влияние осуществляется по принципу прямых и обратных связей: кортикотропин повышает продукцию глюкокортик

Гормоны надпочечников. Минералокортикоиды. Половые гормоны
Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерони дезоксикортикостерон

Регуляция образования минералокортикоидов
Регуляция секрета и образования альдостерона осуществляется системой «ренин-ангиотензин». Ренин образуется в специальных клетках юкстагломерулярного аппарата афферентных артериол почки и выделяется

Значение адреналина и норадреналина
Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности) происходит увеличение его образования и выделен

Половые гормоны. Менструальный цикл
Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредств

Менструальный цикл включает четыре периода
1. Предовуляционный (с пятого по четырнадцатый день). Изменения обусловлены действием фоллитропина, в яичниках происходит усиленное образование эстрогенов, они стимулируют рост матки, разрастание с

Гормоны плаценты. Понятие о тканевых гормонах и антигормонах
Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух гру

Понятие о высшей и низшей нервной деятельности
Низшая нервная деятельность представляет собой интегративную функцию спинного и ствола головного мозга, которая направлена на регуляцию вегетативно-висцеральных рефлексов. С ее помощью обеспечивают

Образование условных рефлексов
Для образования условных рефлексов необходимы определенные условия. 1. Наличие двух раздражителей – индифферентного и безусловного. Это связано с тем, что адекватный раздражитель вызовет б

Торможение условных рефлексов. Понятие о динамическом стереотипе
В основе этого процесса лежат два механизма: безусловное (внешнее) и условное (внутреннее) торможение. Безусловное торможение возникает мгновенно вследствие прекращения ус

Понятие о типах нервной системы
Тип нервной системы напрямую зависит от интенсивности процессов торможения и возбуждения и условий, необходимых для их выработки. Тип нервной системы– это совокупность процессов, п

Понятие о сигнальных системах. Этапы образования сигнальных систем
Сигнальная система– набор условно-рефлекторных связей организма с окружающей средой, который впоследствии служит основой для формирования высшей нервной деятельности. По времени об

Компоненты системы кровообращения. Круги кровообращения
Система кровообращения состоит из четырех компонентов: сердца, кровеносных сосудов, органов – депо крови, механизмов регуляции. Система кровообращения является составляющим компонентом сер

Морфофункциональные особенности сердца
Сердце является четырехкамерным органом, состоящим из двух предсердий, двух желудочков и двух ушек предсердий. Именно с сокращения предсердий и начинается работа сердца. Масса сердца у взрослого че

Физиология миокарда. Проводящая система миокарда. Свойства атипического миокарда
Миокард представлен поперечно-полосатой мышечной тканью, состоящей из отдельных клеток – кардиомиоцитов, соединенных между собой с помощью нексусов, и образующих мышечное волокно миокарда. Таким об

Автоматия сердца
Автоматия– это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы

Энергетическое обеспечение миокарда
Для работы сердца как насоса необходимо достаточное количество энергии. Процесс обеспечения энергией складывается из трех этапов: 1) образования; 2) транспорта;

АТФ-АДФ-трансферазы и креатинфосфокиназы
АТФ путем активного транспорта при участии фермента АТФ-АДФ-трансферазы переносится на наружную поверхность мембраны митохондрий и с помощью активного центра креатинфосфокиназы и ионов Mg доставляю

Коронарный кровоток, его особенности
Для полноценной работы миокарда необходимо достаточное поступление кислорода, которое обеспечивают коронарные артерии. Они начинаются у основания дуги аорты. Правая коронарная артерия кровоснабжает

Рефлекторные влияния на деятельность сердца
За двустороннюю связь сердца с ЦНС отвечают так называемые кардиальные рефлексы. В настоящее время выделяют три рефлекторных влияния – собственные, сопряженные, неспецифические. Собственны

Нервная регуляция деятельности сердца
Нервная регуляция характеризуется рядом особенностей. 1. Нервная система оказывает пусковое и корригирующее влияние на работу сердца, обеспечивая приспособление к потребностям организма.

Гуморальная регуляция деятельности сердца
Факторы гуморальной регуляции делят на две группы: 1) вещества системного действия; 2) вещества местного действия. К веществам системного действияотносят

Сосудистый тонус и его регуляция
Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным. Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нер

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления
Функциональная система, поддерживающая на постоянном уровне величину кровяного давления, – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью

Гистогематический барьер и его физиологическая роль
Гистогематический барьер– это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является

Сущность и значение процессов дыхания
Дыхание является наиболее древним процессом, с помощью которого осуществляется регенерация газового состава внутренней среды организма. В результате органы и ткани снабжаются кислородом, а отдают у

Аппарат внешнего дыхания. Значение компонентов
У человека внешнее дыхание осуществляется с помощью специального аппарата, основная функция которого заключается в обмене газов между организмом и внешней средой. Аппарат внешнего дыхания

Механизм вдоха и выдоха
У взрослого человека частота дыхания составляет примерно 16–18 дыхательных движений в минуту. Она зависит от интенсивности обменных процессов и газового состава крови. Дыхательный

Понятие о паттерне дыхания
Паттерн– совокупность временных и объемных характеристик дыхательного центра, таких как: 1) частота дыхания; 2) продолжительность дыхательного цикла; 3)

Физиологическая характеристика дыхательного центра
По современным представлениям дыхательный центр– это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют нес

Гуморальная регуляция нейронов дыхательного центра
Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым. Г. Фредерик провел

Нервная регуляция активности нейронов дыхательного центра
Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные. К постоянным относятся три вида: 1) от периферических х

Гомеостаз. Биологические константы
Понятие о внутренней среде организма было введено в 1865 г. Клодом Бернаром. Она представляет собой совокупность жидкостей организма, омывающих все органы и ткани и принимающих участие в обменных п

Понятие о системе крови, ее функции и значение. Физико-химические свойства крови
Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя: 1) периферическую (циркулирующую и депонированную) кровь;

Плазма крови, ее состав
Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8-10 % из сухого остатка. В состав сухого остатка входят неорганические и органически

Физиология эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров де

Виды гемоглобина и его значение
Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержитс

Физиология лейкоцитов
Лейкоциты– ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней

Физиология тромбоцитов
Тромбоциты– безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 × 109/л.

Иммунологические основы определения группы крови
Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов – агглютиногенов и предположил наличие в

Антигенная система эритроцитов, иммунный конфликт
Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Антитела – это иммуноглобулины, образующиес

Структурные компоненты гемостаза
Гемостаз– сложная биологическая система приспособительных реакций, обеспечивающая сохранение жидкого состояния крови в сосудистом русле и остановку кровотечений из поврежденных сос

Функции системы гемостаза
1. Поддержание крови в сосудистом русле в жидком состоянии. 2. Остановка кровотечения. 3. Опосредование межбелковых и межклеточных взаимодействий. 4. Опсоническая – очист

Механизмы образования тромбоцитарного и коагуляционного тромба
Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах, где имеются низкое кровяное давление и малый просвет сосудов. Остановка кровотечения может прои

Факторы свертывания крови
В процессе свертывания крови принимают участие много факторов, они называются факторами свертывания крови, содержатся в плазме крови, форменных элементах и тканях. Плазменные факторы свертывания кр

Фазы свертывания крови
Свертывание крови– это сложный ферментативный, цепной (каскадный), матричный процесс, сущность которого состоит в переходе растворимого белка фибриногена в нерастворимый белок фибр

Физиология фибринолиза
Система фибринолиза– ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью п

Процесс фибринолиза проходит в три фазы
Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

Почки выполняют в организме ряд функций
1. Регулируют объем крови и внеклеточной жидкости (осуществляют волюморегуляцию), при увеличении объема крови волюморецепторы левого предсердия активируются: угнетается секреция антидиуретического

Строение нефрона
Нефрон– функциональная почечная единица, где происходит образование мочи. В состав нефрона входят: 1) почечное тельце (двустенная капсула клубочка, внутри

Механизм канальцевой реабсорбции
Реабсорбция– процесс обратного всасывания ценных для организма веществ из первичной мочи. В различных частях канальцев нефрона всасываются различные вещества. В проксимальном отдел

Понятие о системе пищеварения. Ее функции
Система пищеварения– сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования.

Типы пищеварения
Выделяют три типа пищеварения: 1) внеклеточное; 2) внутриклеточное; 3) мембранное. Внеклеточное пищеварение происходит за пределами клетки, кото

Секреторная функция системы пищеварения
Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать опре

Моторная деятельность желудочно-кишечного тракта
Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мыш

Регуляция моторной деятельности желудочно-кишечного тракта
Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В резу

Механизм работы сфинктеров
Сфинктер– утолщение гладкомышечных слоев, за счет которых весь желудочно-кишечный тракт делится на определенные отделы. Существуют следующие сфинктеры: 1) кардиальный;

Физиология всасывания
Всасывание– процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желу

Механизм всасывания воды и минеральных веществ
Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение

Механизмы всасывания углеводов, жиров и белков
Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем вса

Механизмы регуляции процессов всасывания
Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами. В тонком кишечнике основная роль принадлежит местному способу,

Физиология пищеварительного центра
Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр – это совокупность нейронов, расположенных на разных ур

Спинной мозг -это самый древний отдел ЦНС. Он расположен в позвоночном канале и имеет сегментарное строение. Спинной мозг разделяется на шейный, грудной, поясничный и крестцовый отделы, в каждый из которых входит разное количество сегментов. От сегмента отходят две пары корешков - задние и передние (рис. 3.11).

Задние корешки образованы аксонами первичных афферентных нейронов, тела которых лежат в спинномозговых чувствительных ганглиях; передние корешки состоят из отростков двигательных нейронов, они направляются к соответствующим эффекторам (закон Белла-Мажанди). Каждый корешок представляет собой множество нервных волокон.

Рис. 3.11.

На поперечном разрезе спинного мозга (рис. 3.12) видно, что в центре располагается серое вещество, состоящее из тел нейронов и напоминающее форму бабочки, а по периферии лежит белое вещество, представляющее собой систему отростков нейронов: восходящих (нервные волокна направляются к разным отделам головного мозга) и нисходящих (нервные волокна направляются в те или иные отделы спинного мозга).

Рис. 3.12.

  • 1 - передний рог серого вещества; 2 - задний рог серого вещества;
  • 3 - боковой рог серого вещества; 4 - передний корешок спинного мозга; 5 - задний корешок спинного мозга.

Появление и усложнение спинного мозга связано с развитием локомоции (передвижения). Локомоция, обеспечивая перемещения человека или животного в окружающей среде, создает возможность их существования.

Спинной мозг является центром многих рефлексов. Их можно разделить на 3 группы: защитные, вегетативные и тонические.

  • 1. Защитно-болевые рефлексы характеризуются тем, что действие раздражителей, как правило, на кожную поверхность, вызывает защитную реакцию, которая приводит к удалению раздражителя с поверхности тела или удалению тела или его частей от раздражителя. Защитные реакции выражаются в отдергивании конечности или убегании от раздражителя (сгибательные и разгибательные рефлексы). Эти рефлексы осуществляются посегментно, но при более сложных рефлексах, таких как чесание в труднодоступных местах, возникают сложные многосегментные рефлексы.
  • 2. Вегетативные рефлексы обеспечиваются нервными клетками, расположенными в боковых рогах спинного мозга, которые являются центрами симпатической нервной системы. Здесь осуществляются сосудодвигательные, мочеиспускательный рефлексы, рефлексы дефекации, потоотделения и др.
  • 3. Очень важное значение имеют тонические рефлексы. Они обеспечивают образование и сохранение тонуса скелетной мускулатуры. Тонус-это постоянное, невидимое сокращение (напряжение) мышц без явления утомления. Тонус обеспечивает позу и положение тела в пространстве. Поза-это фиксированное положение тела (головы и других частей тела) человека или животных в пространстве в условиях земного притяжения.

Кроме того, спинной мозг выполняет проводниковую функцию, которая осуществляется восходящими и нисходящими волокнами белого вещества спинного мозга (табл. 3.1). В составе проводящих путей проходят как афферентные, так и эфферентные волокна. Поскольку часть этих волокон проводит интероцептивные импульсы от внутренних органов, это позволяет использовать их с целью обезболивания при внутриполостных операциях путем введения анестезирующего вещества в спинномозговой канал (спинномозговая анестезия).

Таблица 3.1

Проводниковые пути спинного мозга и их физиологическое значение

Задний спинно-мозжечковый (пучок Флексига)

Проводит импульсы от проприорецепторов мышц, сухожилий, связок в мозжечок; импуль- сация не осознаваемая

Передний спинно-мозжечковый (пучок Говерса)

Латеральный спиноталамический

Болевая и температурная чувствительности

Передний спиноталамический

Тактильная чувствительность, прикосновение, давление

Нисходящие (двигательные) пути

Физиологическое значение

Латеральный кортикоспинальный (пирамидный)

Импульсы к скелетным мышцам, произвольные движения

Передний кортикоспинальный (пирамидный)

Руброспинальный (пучок Монакова), проходит в боковых столбах

Импульсы, поддерживающие тонус скелетных мышц

Ретикулоспинальный, проходит в передних столбах

Импульсы, поддерживающие тонус скелетных мышц с помощью возбуждающих и тормозящих влияний на а- и умотонейроны, а также регулирующие состояние спинальных вегетативных центров

Вестибулоспинальный, проходит в передних столбах

Импульсы, обеспечивающие поддержание позы и равновесия тела

Ректоспинальный, проходит в передних столбах

Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов (рефлексов четверохолмия)

Возрастные особенности спинного мозга

Спинной мозг развивается раньше других отделов ЦНС. В период внутриутробного развития и у новорожденного он заполняет всю полость спинномозгового канала. Длина спинного мозга у новорожденного составляет 14-16 см. Рост в длину осевого цилиндра и миелиновой оболочки продолжается до 20 лет. Наиболее интенсивно он растет в первый год жизни. Однако скорость его роста отстает от роста позвоночника. Поэтому к концу 1 -го года жизни спинной мозг расположен на уровне верхних поясничных позвонков, так же как у взрослого человека.

Рост отдельных сегментов идет неравномерно. Наиболее интенсивно растут грудные сегменты, слабее -поясничные и крестцовые. Шейное и поясничное утолщения появляются уже в эмбриональном периоде. К концу 1-го года жизни и после 2 лет эти утолщения достигают наибольшего развития, что связано с развитием конечностей и их двигательной активностью.

Клетки спинного мозга начинают развиваться во внутриутробном периоде, но развитие не заканчивается после рождения. У новорожденного нейроны, образующие ядра спинного мозга, морфологически зрелые, однако отличаются от взрослого человека меньшей величиной и отсутствием пигмента. У новорожденного ребенка на поперечном срезе сегментов преобладают задние рога над передними рогами. Это свидетельствует о более развитых чувствительных функциях по сравнению с двигательными. Соотношение этих частей достигает уровня взрослых к 7 годам, однако функционально двигательные и чувствительные нейроны продолжают развиваться.

Диаметр спинного мозга связан с развитием чувствительности, двигательной активности и проводящих путей. После 12 лет диаметр спинного мозга достигает взрослого уровня.

Количество спинномозговой жидкости у новорожденных меньше, чем у взрослых (40-60 г), а содержание белков больше. В дальнейшем, с 8-10 лет, количество спинномозговой жидкости у детей почти одинаковое со взрослыми, а количество белков уже с 6-12 мес соответствует уровню взрослых.

Рефлекторная функция спинного мозга формируется уже в эмбриональном периоде, а ее становление стимулируется движениями ребенка. У плода с 9-й недели отмечаются генерализованные движения рук и ног (одновременное сокращение сгибателей и разгибателей) при раздражении кожи. Тоническое сокращение мышц-сгибателей преобладает и формирует позу плода, обеспечивая его минимальный объем в матке, периодические генерализованные сокращения мышц-разгибателей, начинающиеся с 4-5-го месяца внутриутробной жизни, ощущаются матерью как шевеление плода. После рождения появляются рефлексы, которые исчезают постепенно в онтогенезе:

  • шаговый рефлекс (движения ножками при взятии ребенка под мышки);
  • рефлекс Бабинского (отведение большого пальца ноги при раздражении стопы, исчезает в начале 2-го года жизни);
  • коленный рефлекс (сгибание коленного сустава в связи с преобладанием тонуса сгибателей; преобразуется в разгибательный на 2-м месяце);
  • хватательный рефлекс (схватывание и удержание предмета при прикосновении к ладони, исчезает на 3-4-й месяц);
  • рефлекс обхватывания (отведение рук в стороны, затем их сведение при быстром подъеме и опускании ребенка, исчезает после 4-го месяца);
  • рефлекс ползания (в положении лежа на животе ребенок поднимает голову и совершает ползающие движения; если подставить к подошвам ладонь, то ребенок начнет активно отталкиваться ногами от препятствия, исчезает к 4-му месяцу);
  • лабиринтный рефлекс (в положении ребенка на спине при изменении положения головы в пространстве повышается тонус мышц разгибателей шеи, спины, ног; при переворачивании на живот - увеличивается тонус сгибателей шеи, спины, рук и ног);
  • туловищно-выпрямительный (при соприкосновении стоп ребенка с опорой наблюдается выпрямление головы, формируется к 1-му месяцу);
  • рефлекс Ландау (верхний - ребенок в положении на животе поднимает голову и верхнюю часть туловища, опираясь на плоскость руками; нижний - в положении на животе ребенок разгибает и поднимает ноги; эти рефлексы формируются к 5-6-му месяцу) и др.

Сначала рефлексы спинного мозга очень несовершенны, не координированы, генералированны, тонус мышц-сгибателей преобладает над тонусом разгибателей. Периоды двигательной активности преобладают над периодами покоя. Рефлексогенные зоны суживаются к концу 1-го года жизни и становятся более специализированными.

При старении организма происходит уменьшение силы и увеличение латентного периода рефлекторных реакций, снижается корковый контроль спинномозговых рефлексов (опять появляется рефлекс Бабинского, хоботковый губной рефлекс), ухудшается координация движений в связи с уменьшением силы и подвижности основных нервных процессов.

Как устроен спинной мозг человека, где находится и как он функционирует? Если кратко — это основной орган ЦНС. С его помощью сигналы с периферии поступают в центральную часть, и обратно. Анатомия его довольно сложная, имеет в строении множество нервных окончаний, веществ и оболочек. Чтобы лучше изучить особенности и роль, которые выполняет данный орган, предлагаем оставаться с нами и читать статью.

[ Скрыть ]

Анатомические особенности

Довольно толстый жгут, имеющий белый цвет, расположенный в канале позвоночника — это и есть спинной мозг человека. В диаметре он равен величине порядка 1-1,5 см, а длина едва не достигает полуметра (до 45 см). Весит этот орган порядка 38 г.

Узкий позвоночный канал — это не только место расположения важного органа, но также и его защита. Сердцевина органа состоит из вещества серого цвета. Его охватывает субстанция белого тона, она же покрыта защитными и питающими сердцевину оболочками. Таков общий план строения спинного мозга.

Топография

Строение и функции спинного мозга довольно непросты. Ее подробно изучают студенты-нейрохирурги. Специалисты очень скрупулёзно рассматривают и развитие спинного мозга. Обывателей же интересует вопрос о том, что такое его топография и знакомство с ведущей ролью этого органа.

Так, довольно просто описать суть и цели, которым служит данный орган. Шейный отдел спинного мозга на уровне затылка в районе отверстия переходит в мозжечок. Спинной мозг заканчивается на уровне первых 2-х поясничных позвонков. Конус спинного мозга находится там, где расположена пара позвонков в зоне поясницы. Дальше — всем известная «терминальная нить».

Но этот фрагмент считается атрофированным. Его именуют «концевая» область. По всей окружности нити распределены нервные окончания, которые называют «корешки». Концевая нить снабжена веществом, содержащим малую долю ткани нервной системы. А вот внешняя часть даже похожей тканью не оснащена.

Топография органа включает пару утолщений там, где выходят иннервирующие отростки (шейное утолщение спинного мозга и поясничное). Внешняя и задняя поверхности жгута разделены щелками, именуемыми «срединными». Та, что спереди, более глубокая, задняя — сглаженная.

Внешнее строение

Общее строение спинного мозга предполагает его разделение на ряд поверхностей: задняя, передняя и две боковые. Спинномозговой жгут имеет неярко выраженные борозды на поверхности сбоку. Они расположены продольно, а от борозд идут нервы. Их еще именуют «корешки». В зоне поясницы вместе с терминальной нитью они образуют хвост, который принято называть конским. Борозды разделяют половину этого жгута на следующие структуры:

  • переднюю;
  • боковую;
  • заднюю (канатики).

Борозды спинного мозга распространяются по каналу. Корешки распределяются на передние – они образованны эфферентными нейронами, и задние, созданные посредством афферентных нейронов. Их тела сходятся в узелок. Корешки объединяются и образуют нерв. Так, со всех сторон жгута находится свыше 30 окончаний нервов, формирующие ровно столько же пар. Таково внешнее строение спинного мозга.

Анатомически он состоит из веществ 2 типов: белого и серого. Первое — это отростки нейронного типа, а серое — их тела.

Белое вещество

Все канатики полностью выполнены из белого вещества спинного мозга. Они состоят из нервных волокон продольного типа. Эти нити сходятся, формируя своеобразные проводники. Соотносясь с функциональным назначением, волокна подразделяют на 3 вида:

  • двигательные;
  • ассоциативные;
  • чувствительные.

Первые представлены короткими пучками и объединяют все части в единую систему. Вторые — называются восходящими. Они подают сигналы центрам. Третьи – нисходящие. Они дают сигналы от центральных структур к участкам рогов.

Серое вещество

Оно структурно напоминает сгруппированные продольные пластины, состоящие из однородных нейронов. В нем находятся не только нейронные тела, но и из нейропиля, клетки глиальные и капилляры. По всему позвоночнику оно образует 2 столбовых типа, слева и справа. Они соединяются серыми спайками.

В передних рогах помещаются нейроны наиболее крупного размера. Они формируют двигательные ядра спинного мозга и нейроны тормозные. Строение серого вещества рогов заднего плана неодинаково. В таковом есть огромное число нейронов вставочного типа.

Боковые рога спинного мозга наполняют центры ВНС, расширения зрачка, базисы иннервации пищеварительной системы и других важных органов человеческого организма. В ядре серого вещества спинного мозга есть канал, который нейрохирурги именуют «центральным». Он наполнен ликвором. У совершеннолетних в некоторых местах он заполнен ликвором, а где-то находится в заросшем состоянии.

Оболочки

Анатомия спинного мозга описывает оболочки спинного мозга:

  • сосудистая мягкая;
  • твердая;
  • бессосудистая или паутинная.

Характеристика 1 оболочки следующая: мягкая, пронизана сосудами, нервами. Ее окутывает бессосудистая часть. Тут есть некоторое пространство, называемое «подпаутинное». В эту нишу оттекает ликвор, образующийся в одной из систем. Последняя оболочка представлена соединительной тканью, она прочна и гибка. Оболочки спинного и головного мозга идентичны и представляют собой единую структуру.

Строение сегментарное

Сегмент спинного мозга — это отрезок жгута вместе со связанными нервами. Морфологически разделения одного сегмента спинного мозга от другого нет. Оно исключительно функционально. Каждый из сегментов иннервирует какой-либо район. Обозначение сегментов спинного мозга представлено буквенно-цифровыми индексами, ориентирующими на часть позвоночного жгута и содержащие номера сегментов.

Спинномозговой жгут состоит из порядка 33 сегментов. Сегменты спинного мозга имеют по 4 корешка, по паре передних и задних. Столб позвоночника существенно длиннее жгута, поэтому следует помнить, что сегменты пронумерованы не аналогично нумерации позвонков. Любой нерв состоит из двигательно-чувствительных корешков. Они пучками выходят из этого жгута к отверстиям между позвонками.

Нервное окончание, расположенное сзади, формирует ганглий и сливается с нервным окончанием спереди. При этом образуется смешанный нерв, который разделен на веточки:

  1. Оболочечная ветка иннервирует, сообразуясь с характером оболочки спинного мозга и канальной стенкой.
  2. Спинная — кожный покров на соответствующих участках, а также глубокие мышечные ткани.
  3. Соединительнотканная ветка является связующим звеном между жгутом и ганглиями.
  4. Брюшная ветвь отвечает за иннервацию конечностей, боковых поверхностей тела и ткани брюшной части тела.

Кровоснабжение

Жгут снабжается кровью с помощью прилегающих к нему артерий. Посредством слияния ветвей позвоночных артерий, образована передняя артерия. Она призвана располагаться вдоль передней щели жгута. Кровоснабжение спинного мозга обеспечивают и находящиеся там артерии. Они находятся сзади от жгута.

Соединяются они с шеей и артериями, которые именуются «задними межреберными, поясничными и боковыми крестцовыми артериями». Между ними имеется сеть анастомозов, благодаря чему жгут буквально опутан ветками артерий. Для кровоснабжения спинного мозга помимо артерий нужны вены, которые также обеспечивают отток крови.

Функции и роль в организме

На долю спинного мозга человека приходится 2 главные функции: одна нормализует связку мозг-тело. Она – рефлекторная, приводит все в действие не без участия воли. Вторая проводит импульсы к основному мозгу по восходящей, и передает их обратно от него. За эту деятельность отвечают нисходящие или эфферентные проводящие пути спинного мозга.

Восходящие пути спинного мозга представлены трактами:

  • спиноталамическими;
  • спинномозжечковыми;
  • клиновидным и тонким пучками.

Пирамидные тракты, вестибулоспинальный, тектоспинальный и красноядерно-спинальный пути относят к особым эфферентным путям.

Функция рефлекторная нацелена на сохранение позы (рефлексы положения), на способность последовательно чередовать действия (двигательные программы), например, шагание. Данная функция также обеспечивает рефлекторный защитный механизм (быстрое устранение конечностей от горячих предметов).

Вегетативные рефлексы спинного мозга являются управляющими сигналами, обеспечивающими бесперебойную работу внутренних органов. Миоматическике рефлексы призваны обеспечивать сократительную активность мышц в ответ на их расжгутение.

Анатомия и физиология спинного мозга — это целая область знаний, описывающая его строение и особенности функционирования. Она помогает понять насколько важен орган и как связан спинной и головной мозг. Благодаря этому описанию, люди получают необходимые представления о важном органе.

Видео «Анатомия и физиология человека»

Из этого видео Вы узнаете о биологическом строении органа.

Торможение - активный процесс задержки деятельности органа. В ЦНС всегда 2 процесса - торможение(координационное значение, ограничительное(регуляция потока чувствительной информации), охранительное(оно предупреждает нейроны от перевозбуждения)) и возбуждение. Открытие торможение связано с работой Сеченова. Он наложил в область таламуса NaCl (заторможено)

Гольц При погружении лапки в кислоту и сдавлении передней лапки- отдергивание.

Шеррингтон - рецепторное торможение.

Классификация торможения-

  1. Первичное торможение -специализированное тормозные нейроны со специальными медиаторами(ГАМК, глицин) а- постсинаптическое б-пресинаптическое
  2. Вторичное торможение - в возбуждающих синапсах в определенном состоянии а)пессимальное б)после возбуждения

Тормозные нейроны не отличаются от других. Аксоны их образуют тормозной синапс и по окончанию аксона содержат специфические медиаторы - ГАМК и глицин. Аксоны тормозных нейронов заканчиваются на аксоне возбуждающего-аксо-аксональный синапс(пресинаптическое торможение)

ГАМК(рецептор А-Cl, B-К, С-Сl) сетчатка, гиппокамп, новая кора

При возбуждении тормозного нейрона будет выделятся ГАМК, если она взаимодействует с А рецептором мембрана гиперполяризуется

Мышечное сокращение

Одиночный импульс - 1) латентный период 2)фаза укорочения 3)фаза расслабление(уменьшение кальция и отсоединение головки миозина от актиновых филаментов). Суммация - полная(гладкий тетанус), неполная(зубчатый тетанус).

Та максимальная частота, которая вызывает наилучший гладкий тетанус - оптимум.

Изотонический режим(напряжение постоянно, длина меняется)

Изометрический режим(напряжение изменяется, длина не меняется)

Постсинаптическое торможение - специальные тормозные нейроны-специальные тормозные синапсы.

Гиперполяризация уменьшит чувствительность мембраны. Где выделяется глицин, там есть Cl-каналы. Cl вызывает гиперполяризацию. Нейроны вызывают торможение. Лекарственные препараты усиливают действие торможения(бензодиазепины). Процесс гиперполяризации будет более длительным. Таким действием обладают барбитураты и алкоголь.

Пресинаптическое торможение. Тормозной нейрон образует минапс с аксоном тормозного нейрона. Аксоаксональный синапс. Если выделится ГАМК то рецепторы типа И увеличивают проницаемость К. К гиперполярмзует мембрану, уменьшает проницаемость для ионов Ca. Пресинаптическое торможение блокирует действие к возбуждающему синапсу. И гипер и де поляризация блокирует Ca каналы.

Вторичное торможение - пессимальное, в след за возбуждением.

Пессимальное при увеличении потока возбуждающих импульсов выделяется большое количество медиатора например ацетилхолина, который холинэстераза не успевает разрушать. Это приводит к стойкой деполяризации и к понижению чувствительности. Торможение в след за возбуждением в том случае, если формируется длит «+» следовой потенциал. Связан с усиление выхода ионов К после возбуждения К выходит и усиливает + заряд на мембране - гиперполяризация.

Координация рефлексов

Согласованное взаимодействие нервных центров и нервных процессов, которое обеспечивает более значимых рефлексов в данный рецепторный момент торможения блокируется либо сгибатель, либо разгибатель. Конвергенция, иррадиация, механизм обратной связи, явление доминанты.

Конвергенция - слияние возбуждений и сосредоточение на группе нейронов(принцип суммации)

Сенсорная конвергенция - конвергенция возбуждается от различных рецепторов. Мультибиологическая конвергенция - один и тот же рецептор воспринимает сигналы разных раздражителей.

Процесс иррадиации - захват большого числа нервных центров

Рецепторное торможение - один центр возбуждается, другой затормаживается (сгибатели/разгибатели)

Механизм обратной связи - возникает с исполнительных органов, движение контролируется импульсами.

Доминанта - понятие ввел Ухтомский(доминанта одного центра над др.) Акт глотания, фантомные боли

Физиология спинного мозга

Распологается в позвоночном канале, окружен спинномозговой жидкостью. Верхняя граница чуть выше большого затылочного отверстия, где спинной мозг граничит с продолговатым. Нижняя граница соответствует 12 грудному или 1ому поясничному позвонку. Спинной мозг -31-33 сегмента. 8шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1-3 копчиковых. От каждого сегмента спинного мозга отходят 2 пары спинальных нервов, которые образуют 2 пары корешков. 2 утолщения - шейное(С4-Т2) , поясничное 10-12T. Ниже расположен конский хвост. Спинномозговые нервы связаны с определенными сегментами тела. Есть зоны перекрытия иннервации. Из-за этого только при повреждении 3х сегментов потеря иннервации. Серое вещество - бабочка.

См.тетрадь. Спинному мозгу присуща рефлекторная функция и проводниковая.

Рефлексы - двигательные(тонические), локомоторные(перемещение тела в пространстве), вегетативные. Работа сегментов спинного мозга контролируется надсегментарными центрами.

Структура нервно - мышечного волокна - волокна с ядерной сумкой и с ядерной цепочкой(области не способные к сокращению).

Рефлекс на растяжение - миотатический рефлекс.

Мышечные веретена информируют нас о степени сокращения мышцы, о скорости. Волокна с ядерной сумкой - быстрое изменение длины, яд. Цепочкой - медленное.

Альфа эфферентные волокна в выполнении точных движений, моторные - тонус мышц.

Сухожильные рефлексы-

Торможение в спинном мозге

Для осуществления спинальных эффектов очень важен процесс торможения. Это координация спин. Рефлексов, регуляция уровня возбудимости моторных нейронов. Прямое - интернейронное -обеспечивает согласованную работу центров антогонистов(сгибатели-разгибатели), предотвращает растяжение. Непрямое - возникает в альфа нейронах. Образует коллатерали с клетками реншоу. Клетка Реншоу образует тормозной синапс на альфа нейронах. Процесс саморегуляции альфа моторных нейронов. Пресинаптическое торможение с помощью аксо-аксональных синапсов.

Проводниковая функция -

Восходящие пути -

  1. Тонкий пучок Голля - от нижней части тела - проприорецепторы сухожилий и мышц, часть тактильных рецепторов кожи, висцерорецепторы
  2. Клиновидный пучок Бурдаха - от кожи верхней части тела
  3. Латеральный спиноталамический тракт - болевая и температурная чуствительность
  4. Вентральный спино-таламический - тактильная чуствительность
  5. Дорсальный спино-мозжечковый тракт Флексинга- дважды перекрещенный - проприорецепторы
  6. Вентральный спино-мозжечковый тракт Товерса- проприорецепторы

Нисходящие пути -

  1. Латеральный кортико-спинальный пирамидный тракт - перекрест в продолговатом мозге, мотонейроны передних рогов спинного мозга, двигательные команды. Спинальный паралич
  2. Прямой передний кортикоспинальный пирамидный тракт -перекрест на уровне сегментов, команды как у латерал. Тракта. Переферический паралич
  3. Руброспинальный тракт Моакова - красные ядра, перекрест Фореля в среднем мозге, интернейроны спинного мозга, повышает тонус мышц сгибателей и угнетает тонус мышц разгибателей
  4. Вестибулоспинальный тракт - вестибулярные ядра Дейтерса, перекрест, мотонейроны спинного мозга, повышает тонус мышц разгибателей и угнетает тонус сгибателей
  5. Ретикулоспинальный тракт - ядра ретикулярной формации, интернейроны спинного мозга, регуляция тонуса мышц
  6. Тектоспинальный тракт - ядра покрышки среднего мозга, интернейроны спинного мозга, регуляция тонуса мышц.