Мозг против мозга - кто кого

Итак, что мы знаем сегодня? Фактрум собрал 25 фактов о чудесном, странном и невероятно мощном человеческом мозге.

1. Мозг живого человека имеет розовый оттенок. Серые клетки, составляющие 40% нашего мозга становятся серыми только после отмирания.

2. В мозге находится порядка 80–100 миллиардов нейронов (нервных клеток). В левом полушарии почти на 200 млн нейронов больше, чем в правом.

3. Нейроны различаются по размеру от 4 до 100 мкм в ширину. Чтобы получить представление о том, как это мало, посмотрите на точку в конце это предложения, она порядка около 500 микрон в окружности, значит, более 100 самых маленьких нейронов может поместиться внутри неё.

4. Половые различия в мозге являются спорными, но в соответствии с исследованием 2014 года, опубликованном в журнале Neuroscience, серого вещества больше в мозге женщин .

5. Больший процент серого вещества может составлять у людей гуманитарного склада ума.

6. Исследования показывают, что регулярные физические упражнения могут привести к увеличению серого вещества внутри гиппокампа.

7. У мужчин при меньшем количестве серого вещества, больше белого и спинномозговой жидкости.

8. Белое вещество, составляющее остальные 60% мозга, получает свой цвет от миелина, который изолирует аксоны и увеличивает скорость, с которой перемещаются электрические импульсы.

9. Жир может повредить сердцу, но он хорош для мозга. Более половины мозга, в том числе миелина, состоит из жира.

10. При весе в около 1,3 кг, мозг составляет лишь 2% до 3% от массы тела, но потребляет 20% кислорода в организме и от 15% до 20% от ее глюкозы.

11. Мозг вырабатывает невероятное количество энергии. Энергия спящего мозга могла бы зажечь 25-ваттную лампочку.

12. Размер мозга не влияет на умственные способности человека. Так, например, мозг Альберта Эйнштейна весил 1,2 кг, что чуть меньше среднего размера человеческого мозга.

13. Аксоны (нейриты, по которому нервные импульсы идут от тела клетки к иннервируемым органам) в мозге каждого человека могут быть порядка 161 000 км, и могут окутать Землю 4 раза.

14. В мозге нет болевых рецепторов. Поэтому нейрохирурги могут резать мозг человека в сознании.

15. Не верьте глупому мифу о 10%. Мы используем 100% нашего мозга.

16. Морщины нашего мозга, так называемые извилины, увеличивают площадь поверхности мозга, позволяя содержать большее количество нейронов, отвечающих за память и мысли.

17. Хотите больше извилин? Попробуйте медитацию. Процесс познания своего внутреннего мира тесно связан с увеличением количества извилин в области мозга отвечающей за концентрацию, самоанализ и эмоциональный контроль.

19. Но даже измученный мозг может быть продуктивным. Некоторые эксперты утверждают, что в день у человека проскакивает 70 000 мыслей.

20. Информация в мозге проходит через различные типы нейронов на разных скоростях, начиная от 1,5 км в час до 440 км в час (сопоставимо со скоростью самого быстрого автомобиля в мире).

21. Наш мозг может сканировать и обрабатывать сложные изображения (например, платформа метро в час пик) в течение лишь 13 миллисекунд. Это довольно быстро, учитывая, что мигание глаза занимает несколько сотен миллисекунд.

22. Еще 15 лет назад ученые считали, что мозг формируется в течение первых лет жизни человека. Но недавние исследования показали, что у подростков происходит критические изменения в мозге, особенно в префронтальной коре и лимбической системе, отвечающих за принятие социальных решений, импульсный контроль и эмоциональную обработку.

23. Когда дело касается головного мозга, задержка в его развитии является абсолютно нормальным явлением. Конечно, юридически вы становитесь взрослым уже в 18 лет, но, как утверждают нейробиологи развитие мозга продолжается вплоть до 25 летнего возраста.

Родители и учителя, которые много читают вслух и обсуждают прочитанное с детьми, ускоряют и стимулируют их (детей) умственное развитие.

Нейроны в мозгу образуются в течение всей жизни, в отличие от распространенного ранее мифа о том, что нервные клетки не восстанавливаются.

Для того, чтобы это образование происходило, надо постоянно “нагружать” свой мозг, получая новые впечатления.
У левшей и владеющих двумя руками одинаково людей мозолистое тело в головном мозгу в среднем на 11 процентов больше, чем у правшей.

Мозолистое тело – это особое образование, состоящее из 200-250 миллионов нервных волокон, соединяющих левое и правое полушарие – своеобразная шина данных.

Головной мозг растет в размерах в среднем до 18 лет.

Если ребенок находится в окружении, стимулирующем развитие, он в дальнейшей жизни будет на 25% лучше усваивать информацию. И наоборот, примитивная среда обитания на те же 25% снижает обучающие способности.

Мозг творческого человека работает в особом режиме, в отличие от техногенного “сухаря”

В Нью-Йорке было проведено интересное исследование, согласно которому студенты, исключившие из своего пищевого рациона продукты с искусственными ароматизаторами и консервантами, имеют в среднем на 14% выше IQ, чем их менее придирчивые товарищи. Тут, правда, непонятно – то ли повышенный IQ вызвал неприятие синтетической пищи, то ли отсутствие ароматизаторов вызвало повышение IQ. Хочется верить, что второе.

Мозг человека имеет врожденное стремление к познанию, то есть любознательность. Но при отсутствии стимуляции это стремление быстро исчезает, уступая место скуке.

Еще одно исследование показало, что изучение новых вещей и явлений приводит к быстрому изменению структуры мозговой активности, причем уже через неделю обучения.

Музыка улучшает обучаемость. Наиболее эффективна легкая фоновая мелодия, особенно классическая музыка.

В мозгу есть два миндалевидных тела (по одному в каждом полушарии), которые “отвечают” за нашу способность читать лица окружающих и понимать, как они себя чувствуют.

Способность к обучению и запоминанию называется декларативной памятью, в отличие от непосредственно воспоминаний она “находится” в другой части мозга.

Запах позволяет лучше усваивать знания. Исследование показало, что совмещение обучения с некоторыми ароматами улучшает процесс запоминания.

Каждый раз, когда вы что-то вспоминаете, в мозгу образуется новая связь.

Память сильно связана с ассоциациями, поэтому ассоциативный способ обучения весьма эффективен. Ассоциации – связи между различными явлениями, понятиями и так далее.

Считается, что мозг упорядочивает воспоминания во время сна.

Недостаток сна ухудшает способность к запоминанию.

Краткосрочная память связана с кратковременными электрохимическими взаимодействиями в мозгу, а долговременная – с изменением структуры связей между нейронами.

Каждый раз, когда мы моргаем, наш мозг “запоминает” картинку, и держит ее до того момента, как начнет поступать новая зрительная информация.

Если бы не было этого явления, то при моргании нам бы заново приходилось рассматривать окружающее.

Казалось бы, что может быть проще, чем смех? Оказывается, этот процесс требует активности как минимум пяти областей мозга – левой части коры головного мозга, анализирующей фразу и разбирающей ее на части. После в дело вступает обширная часть лобной доли, ответственной за социальное поведение. Далее правое полушарие анализирует смысл шутки, “въезжает” в нее. Потом Срабатывает затылочная доля обрабатывает визуальные сигналы, или как окружающие реагируют на шутку. И наконец, двигательные области мозга подают сигнал на соответствующие мышцы, вызывая характерные звуки

До сих пор не известно точно, зачем мы зеваем, и почему зевота так заразительна. По одной из гипотез, ранее зевание было чем то вроде социального ритуала, поэтому в подсознании у нас срабатывают наиболее глубокие участки, вызывая зевание и “отвечая” на зевание окружающих.

Со временем функция зевания стала чисто декоративной, превратившись в рудимент.

В Гарварде есть банк мозгов, где хранится более 7000 экземпляров человеческого мозга для исследования.

Диснеевские мультфильмы являются наглядной демонстрацией различных нервных расстройств – герои в них часто храпят, видят кошмары и ходят во сне.

Подсчитано, что человек в среднем думает 70 тысяч мыслей ежедневно.

Древнегреческий философ Аристотель считал, что мышление и сознание находятся в сердце.

На работу мозга влияет множество факторов, даже гравитация. Установлено, что в условиях невесомости характер взаимодействия нейронов в мозгу изменяется.

В драмах Шекспира слово “brain” (мозг) встречается 66 раз.

Археологи обнаружили доказательства того, что примитивные операции на мозге производились в 2000 году до нашей эры. Они, правда, ограничивались проделыванием отверстий в черепе для снижения внутричерепного давления.

Мозг на три четверти состоит из обыкновенной воды.

Мнение о том, что мы используем 10% от возможностей своего мозга – миф. Даже при сравнительно простой активности задействуются все его области.

Средний вес человеческого мозга – 1300 грамм

Мозг обрабатывает болевые сигналы от многих тысяч болевых рецепторов, но при этом сам не имеет клеток, чувствительных к боли, поэтому не “чувствует” ее.

Ответ на вопрос, что изучает нейробиология, довольно краток. Нейробиология – это отрасль биологии и наука, изучающая строение, функции и физиологию мозга. Само название данной науки говорит, что главными объектами изучения служат нервные клетки – нейроны, из которых состоит вся нервная система.

  • Из чего состоит мозг помимо нейронов?
  • История развития нейробиологии
  • Нейробиологические методы исследования

Из чего состоит мозг помимо нейронов?

В строении нервной системы помимо собственно нейронов принимают ещё участие разнообразные клеточные глии, на долю которых приходится большая часть объёма мозга и других участков нервной системы. Глии предназначены для обслуживания и тесного взаимодействия с нейронами, обеспечивая их нормальное функционирование и жизнедеятельность. Поэтому современная нейробиология мозга изучает также нейроглии, и их разнообразные функции по обеспечению нейронов.

История развития нейробиологии

Современная история развития нейробиологии как науки началась с цепочки открытий на рубеже 19-20 веков:

  1. Представители и сторонники основанной в первой половине XIX века Й.-П. Мюллером немецкой школы физиологии (Г. фон Гельмгольц, К. Людвиг, Л. Герман, Э. Дюбуа-Реймон, Ю. Бернштейн, К. Бернар и пр.) смогли доказать электрический характер передаваемых нервными волокнами сигналов.
  2. Ю. Бернштейн в 1902 году предложил мембранную теорию, описывающую возбуждение нервной ткани, где определяющая роль отводилась ионам калия.
  3. Его современник Е. Овертон в том же году открыл, что натрий необходим для генерации возбуждения в нерве. Но современники не оценили по достоинству работ Овертона.
  4. К. Бернар и Э.Дюбуа-Реймон предположили, что мозговые сигналы передаются через химические вещества.
  5. Российский учёный В.Ю.Чаговец чуть раньше опубликования мембранной теории Бернштейна выдвинул в 1896 году собственную ионную теорию возникновения биоэлектрических явлений. Он также экспериментально подтвердил, что электрический ток оказывает раздражающее физико-химическое действие.
  6. У истоков электроэнцефалографии стоял В.В. Правдич-Неминский, который в 1913 году смог впервые зафиксировать с поверхности черепа собаки электрическую активность её мозга. А первую запись человеческой электроэнцефалограммы удалось сделать в 1928 году австрийскому психиатру Г. Бергеру.
  7. В исследованиях Э.Хаксли, А.Ходжкина и К.Коула были раскрыты механизмы возбудимости нейронов на клеточном и молекулярном уровне. Первый в 1939 году смог измерить, как при возбуждении мембраны гигантских аксонов кальмара меняется её ионная проводимость.
  8. В 60-е годы в институте физиологии АН УССР под руководством ак. П.Костюка были впервые зарегистрированы ионные токи в момент возбуждения мембран нейронов позвоночных и беспозвоночных животных.

Затем история развития нейробиологии пополнилась открытием многих компонентов, принимающих участие в процессе внутриклеточной сигнализации:

  • фосфатазы;
  • киназы;
  • ферменты, участвующие в синтезе вторичных посредников;
  • многочисленные G-белки и другие.

В работе Э.Нэера и Б.Сакмана были описаны исследования одиночных ионных каналов в мышечных волокнах лягушки, которые активировались ацетилхолином. Дальнейшее развитие методов исследования позволило изучить активность всевозможных одиночных ионных каналов, имеющихся в клеточных мембранах. В последние 20 лет в основы нейробиологии стали широко внедряться методы молекулярной биологии, что позволило понять химическое строение различных белков, участвующих в процессах внутриклеточной и межклеточной сигнализации. С помощью электронной и усовершенствованной оптической микроскопии, а также лазерных технологий стало возможным изучение основ физиологии нервных клеток и органелл на макро- и микроуровнях.

Видео о нейробиологии – науке о мозге:

Нейробиологические методы исследования

Теоретические методы исследования в нейробиологии головного мозга человека во многом опираются на изучение ЦНС животных. Человеческий мозг является продуктом длительной общей эволюции жизни на планете, которая началась в архейский период и продолжается до сих пор. Природа перебрала бесчисленные варианты устройства ЦНС и составляющих её элементов. Так, подмечено, что нейроны с отростками и протекающие в них процессы у человека остались точно такими же, как у намного более примитивных животных (рыб, членистоногих, рептилий, амфибий и т. д.).

В развитии нейробиологии последних лет всё чаще используются прижизненные срезы головного мозга морских свинок и новорожденных крысят. Часто употребляется нервная ткань, культивированная искусственно.

Что же могут показать современные методы нейробиологии? Прежде всего, это механизмы работы отдельных нейронов и их отростков. Чтобы зарегистрировать биоэлектрическую активность отростков или самих нейронов, используются особые приёмы микроэлектродной техники. Она, в зависимости от задач и предметов исследования, может выглядеть по-разному.

Чаще всего используется два вида микроэлектродов: стеклянные и металлические. Для последних часто берётся вольфрамовая проволока толщиной от 0,3 до 1 мм. Чтобы зафиксировать активность одиночного нейрона, микроэлектрод вставляется в манипулятор, способный очень точно продвигать его в мозге животного. Манипулятор может работать отдельно или будучи прикреплённым к черепу объекта в зависимости от решаемых задач. В последнем случае устройство должно быть миниатюрным, поэтому получило название микроманипулятора.

Регистрируемая биоэлектрическая активность зависит от величины радиуса кончика микроэлектрода. Если этот диаметр не превышает 5 микронов, то становится возможным регистрировать потенциал единичного нейрона, если при этом кончик электрода приблизится к исследуемой нервной клетке примерно на 100 микрон. Если у кончика микроэлектрода вдвое больший диаметр, то фиксируется одновременная активность десятков или даже сотен нейронов. Также широко распространены микроэлектроды, изготовленные из стеклянных капилляров, диаметры которых колеблются в пределах от 1 до 3 мм.

Что интересного Вы знаете о нейробиологии? Что Вы думаете об этой науке? Расскажите об этом в комментариях .

ЧТО ЗНАЕТ НАУКА О МОЗГЕ


Два прорыва в исследованиях мозга человека

Реально первый прорыв в познании мозга человека был связан с применением метода долгосрочных и краткосрочных имплантированных электродов для диагностики и лечения больных. В то же время ученые начали понимать, как работает отдельный нейрон , как происходит передача информации от нейрон а к нейрон у и по нерву. В нашей стране первыми в условиях непосредственного контакта с мозгом человека стали работать академик Н. П. Бехтерева и ее сотрудники.

Так были получены данные о жизни отдельных зон мозга, о соотношении его важнейших разделов - коры и подкорки и многие другие. Однако мозг состоит из десятков миллиардов нейрон ов, а с помощью электродов можно наблюдать лишь за десятками, да и то в поле зрения исследователей часто попадают не те клетки, которые нужны для исследования, а те, что оказались рядом с лечебным электродом.

Тем временем в мире совершалась техническая революция. Новые вычислительные возможности позволили вывести на новый уровень исследование высших функций мозга с помощью электроэнцефалографии и вызванных потенциал ов. Возникли и новые методы, позволяющие "заглянуть внутрь" мозга: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. Все это создало фундамент для нового прорыва. Он действительно произошел в середине восьмидесятых годов.

В это время научный интерес и возможность его удовлетворения совпали. Видимо, поэтому Конгресс США объявил девяностые годы десятилетием изучения человеческого мозга. Эта инициатива быстро стала международной. Сейчас во всем мире над исследова нием человеческого мозга трудятся сотни лучших лабораторий.

Надо сказать, что у нас в то время в верхних эшелонах власти было много умных и болеющих за державу людей. Поэтому и в нашей стране поняли необходимость исследования мозга человека и предложили мне на базе коллектива, созданного и руководимого академиком Бехтеревой, организовать научный центр по исследованию мозга - Институт мозга человека РАН.

Главное направление деятельности института: фундаментальные исследования организации мозга человека и его сложных психи ческих функций - речи, эмоций, внимания, памяти. Но не только. Одновременно ученые должны вести поиск методов лечения тех больных, у которых эти важные функции нарушены. Соединение фундаментальных исследований и практической работы с больными было одним из основных принципов деятельности института, разработанных его научным руководителем Натальей Петровной Бехтеревой.

Недопустимо ставить эксперименты на человеке. Поэтому большая часть исследований мозга проводится на животных. Однако есть явления, которые могут быть изучены только на человеке. Например, сейчас молодой сотрудник моей лаборатории защищает диссертацию об обработке речи, ее орфографии и синтаксиса в различных структурах мозга. Согласитесь, что это трудно исследовать на крысе. Институт специально ориентирован на исследование того, что нельзя изучать на животных. Мы проводим психофизиологические исследования на добровольцах с применением так называемой неинвазивной техники, не "залезая" внутрь мозга и не причиняя человеку особенных неудобств. Так осуществляются, например, томографические обследования или картирование мозга с помощью электроэнцефалографии.

Но бывает, что болезнь или несчастный случай "ставят эксперимент" на человеческом мозге - например, у больного нарушается речь или память. В этой ситуации можно и нужно исследовать те области мозга, работа которых нарушена. Или, наоборот, у пациента утерян или поврежден кусочек мозга, и ученым предоставляется возможность изучить, какие свои "обязанности" мозг не может выполнять с таким нарушением.

Но просто наблюдать за такими пациентами, мягко говоря, неэтично, и в нашем институте не только исследуют больных с различными повреждениями мозга, но и помогают им, в том числе и с помощью новейших, разработанных нашими сотрудниками методов лечения. Для этой цели при институте существует клиника на 160 коек. Две задачи - исследование и лечение - неразрывно связаны в работе наших сотрудников.

У нас прекрасные высококвалифицированниые доктора и медсестры. Без этого нельзя - ведь мы на переднем крае науки, и нужна высочайшая квалификация, чтобы реализовать новые методики. Практически каждая лаборатория института замкнута на отделения клиники, и это залог непрерывного появления новых подходов. Кроме стандартных методов лечения у нас проводят хирургическое лечение эпилепсии и паркинсонизма, психохирургические операции, лечение мозговой ткани магнитостимуляцией, лечение афазии с помощью электростимуляции, а также многое другое. В клинике лежат тяжелые больные, и бывает удается помочь им в случаях, считавшихся безнадежными. Конечно, это возможно не всегда. Вообще, когда слышишь какие-либо безграничные гарантии в лечении людей, это вызывает очень серьезные сомнения.

Можно ли "перевоспитать" нервные клетки?

Одно из самых современных направлений в работе института - стереотаксис. Это медицинская технология, обеспечивающая возможность малотравматичного, щадящего, прицельного доступа к глубоким структурам головного мозга и дозированное воздействие на них. Это нейрохирургия будущего. Вместо "открытых" нейрохирургических вмешательств, когда, чтобы достичь мозга, делают большую трепанацию, предлагаются малотравматичные, щадящие воздействия на головной мозг.

В развитых странах, прежде всего в США, клинический стереотаксис занял достойное место в нейрохирургии. В США в этой сфере сегодня работают около 300 нейрохирургов - членов Американского стереотаксического общества. Основа стереотаксиса - математика и точные приборы, обеспечивающие прицельное погружение в мозг тонких инструментов. Они позволяют "заглянуть" в мозг живого человека. При этом используется позитронно-эмиссионная томография, магниторезонансная томография, компьютерная рентгеновская томография. "Стереотаксис - мерило методической зрелости нейрохирургии" - мнение ныне покойного нейрохирурга Л. В. Абракова. Для стереотаксического метода лечения очень важно знание роли отдельных "точек" в мозге человека, понимание их взаимодействия, знание того, где и что именно нужно изменить в мозге для лечения той или иной болезни.

В институте существует лаборатория стереотаксических методов, которой руководит доктор медицинских наук, лауреат Государственной премии СССР А. Д. Аничков. По существу, это ведущий стереотаксический центр России. Здесь родилось самое современное направление - компьютерный стереотакcис с программно-математическим обеспечением, которое осуществляется на электронной вычислительной машине. До наших разработок стереотаксические расчеты проводились нейрохирургами вручную во время операции, сейчас же у нас разработаны десятки стереотаксических приборов; некоторые прошли клиническую апробацию и способны решать самые сложные задачи. Совместно с коллегами из ЦНИИ "Электроприбор" создана и впервые в России серийно выпускается компьютеризированная стереотаксическая система, которая по ряду основных показателей превосходит аналогичные зарубежные образцы. Как выразился неизвестный автор, "наконец, робкие лучи цивилизации осветили наши темные пещеры".

В нашем институте стереотаксис применяется при лечении больных, страдающих двигательными нарушениями (паркинсонизмом, болезнью Паркинсона, хореей Гентингтона и другими), эпилепсией, неукротимыми болями (в частности, фантомно-болевым синдромом), некоторыми психи ческими нарушениями. Кроме того, стереотаксис используется для уточнения диагноза и лечения некоторых опухолей головного мозга, для лечения гематом, абсцессов, кист мозга. Стереотаксические вмешательства (как и все остальные нейрохирургические вмешательства) предлагаются больному только в том случае, если исчерпаны все возможности медикаментозного лечения и само заболевание угрожает здоровью пациента или лишает его трудоспособности, делает асоциальным. Все операции производятся только при согласии больного и его родственников, после консилиума специалистов разного профиля.

Существуют два вида стереотаксиса. Первый, нефункциональный, применяется тогда, когда в глубине мозга имеется какое-то органическое поражение, например опухоль. Если ее удалять с помощью обычной техники, придется затронуть здоровые, выполняющие важные функции структуры мозга и больному случайно может быть нанесен вред, иногда даже несовместимый с жизнью. Предположим, что опухоль хорошо видна с помощью магниторезонансного и позитронно-эмиссионного томографов. Тогда можно рассчитать ее координаты и ввести с помощью малотравматичного тонкого щупа радиоактивные вещества, которые выжгут опухоль и за короткое время распадутся. Повреждения при проходе сквозь мозговую ткань минимальны, а опухоль будет уничтожена. Мы провели уже несколько таких операций, бывшие пациенты живут до сих пор, хотя при традиционных методах лечения у них не было никакой надежды.

Суть этого метода в том, что мы устраняем "дефект", который четко видим. Главная задача - решить, как до него добраться, какой путь выбрать, чтобы не задеть важные зоны, какой метод устранения "дефекта" выбрать.

Принципиально другая ситуация при "функциональном" стереотаксисе, который тоже применяется при лечении психи ческих заболеваний. Причина болезни часто заключается в том, что одна маленькая группа нервных клеток или несколько таких групп работают неправильно. Они либо не выделяют необходимые вещества, либо выделяют их слишком много. Клетки могут быть патологически возбуждены, и тогда стимулируют "нехорошую" активность других, здоровых клеток. Эти "сбившиеся с пути" клетки надо найти и либо уничтожить, либо изолировать, либо "перевоспитать" с помощью электростимуляции. В такой ситуации нельзя "увидеть" пораженный участок. Мы должны его вычислить чисто теор етически, как астрономы вычислили орбиту Нептуна.

Именно здесь для нас особенно важны фундаментальные знания о принципах работы мозга, о взаимодействии его участков, о функциональной роли каждого участка мозга. Мы используем результаты стереотаксической неврологии - нового направления, разработанного в институте покойным профессором В. М. Смирновым. Стереотаксическая неврология - это "высший пилотаж", однако именно на этом пути нужно искать возможность лечения многих тяжелых заболеваний, в том числе и психи ческих.

Результаты наших исследований и данные других лабораторий указывают на то, что практически любая, даже очень сложная психи ческая деятельность мозга обеспечивается распределенной в пространстве и изменчивой во времени системой, состоящей из звеньев различной степени жесткости. Понятно, что вмешиваться в работу такой системы очень трудно. Тем не менее сейчас мы это умеем: например, можем создать новый центр речи взамен разрушенного при травме.

При этом происходит своеобразное "перевоспитание" нервных клеток. Дело в том, что существуют нервные клетки, которые от рождения готовы к своей работе, но есть и другие, которые "воспитываются" в процессе развития человека. Научаясь выполнять одни задачи, они забывают другие, но не навсегда. Даже пройдя "специализацию", они в принципе способны взять на себя выполнение каких-то других задач, могут работать и по-другому. Поэтому можно попытаться заставить их взять на себя работу утраченных нервных клеток, заменить их.

Нейрон ы мозга работают как команда корабля: один хорошо умеет вести судно по курсу, другой - стрелять, третий - готовить пищу. Но ведь и стрелка можно научить готовить борщ, а кока - наводить орудие. Нужно только объяснить им, как это делается. В принципе это естественный механизм: если травма мозга произошла у ребенка, у него нервные клетки самопроизвольн о "переучиваются". У взрослых же для "переучивания" клеток нужно применять специальные методы.

Этим и занимаются исследователи - пытаются стимулировать одни нервные клетки выполнять работу других, которые уже нельзя восстановить. В этом направлении уже получены хорошие результаты: например, некоторых пациентов с нарушением области Брока, отвечающей за формирование речи, удалось обучить говорить заново.

Другой пример - лечебное воздействие психохирургических операций, направленных на "выключение" структур области мозга, называемой лимбической системой. При разных болезнях в разных зонах мозга возникает поток патологических импульсов, которые циркулируют по нервным путям. Эти импульсы появляются в результате повышенной активности зон мозга, и такой механизм приводит к целому ряду хронических заболеваний нервной системы, таких, как паркинсонизм, эпилепсия, навязчивые состояния. Пути, по которым проходит циркуляция патологических импульсов, надо найти и максимально щадяще "выключить".

В последние годы проведены многие сотни (особенно в США) стереотаксических психохирургических вмешательств для лечения больных, страдающих некоторыми психи ческими нарушениями (прежде всего, навязчивыми состояниями), у которых оказались неэффективными нехирургические методы лечения. По мнению некоторых наркологов, наркоманию тоже можно рассматривать как разновидность такого рода расстройства, поэтому в случае неэффективности медикаментозного лечения может быть рекомендовано стереотаксическое вмешательство.

Детект ор ошибок

Очень важное направление работы института - исследование высших функций мозга: внимания, памяти, мышлени я, речи, эмоций. Этими проблемами занимаются несколько лабораторий, в том числе та, которой руковожу я, лаборатория академика Н. П. Бехтеревой, лаборатория доктора биологических наук Ю. Д. Кропотова.

Присущие только человеку функции мозга исследуются с помощью различных подходов: используется "обычная" электроэнцефалограмма, но на новом уровне картирования мозга, изучение вызванных потенциал ов, регистрация этих процессов совместно с импульсной активностью нейрон ов при непосредственном контакте с мозговой тканью - для этого применяются имплантированные электроды и техника позитронно-эмиссионной томографии.

Работы академика Н. П. Бехтеревой в этой области достаточно широко освещались в научной и научно-популярной печати. Она начала планомерное исследование психи ческих процессов в мозге еще тогда, когда большинство ученых считали это практически непознаваемым, делом далекого будущего. Как хорошо, что хотя бы в науке истина не зависит от позиции большинства. Многие из тех, кто отрицал возможность таких исследований, теперь считают их приоритетными.

В рамках этой статьи можно упомянуть только о самых интересных результатах, например о детект оре ошибок. Каждый из нас сталкивался с его работой. Представьте, что вы вышли из дому и уже на улице вас начинает терзать странное чувство - что-то не так. Вы возвращаетесь - так и есть, забыли выключить свет в ванной. То есть, вы забыли выполнить обычное, стереотипное действие - щелкнуть выключателем, и этот пропуск автоматически включил контрольный механизм в мозге. Этот механизм в середине шестидесятых был открыт Н. П. Бехтеревой и ее сотрудниками. Несмотря на то, что результаты были опубликованы в научных журналах, в том числе и зарубежных, сейчас они "переоткрыты" на Западе людьми, знающими работы наших ученых, но не гнушающимися прямым заимствованием у них. Исчезновение великой державы привело и к тому, что в науке стало больше случаев прямого плагиата.

Кто отвечает за грамматику?

Очень важное направление работы - так называемое микрокартирование мозга. В наших совместных исследованиях обнаружены даже такие механизмы, как детект ор грамматической правильности осмысл енной фразы. Например, "голубая лента" и "голубой лента". Смысл понятен в обоих случаях. Но есть одна "маленькая, но гордая" группа нейрон ов, которая "взвивается", когда грамматика нарушена, и сигнализирует об этом мозгу. Зачем это нужно? Вероятно, затем, что понимание речи часто идет в первую очередь за счет анализа грамматики (вспомним "глокую куздру" академика Щербы). Если с грамматикой что-то не так, поступает сигнал - надо проводить добавочный анализ.

Найдены микроучастки мозга, которые отвечают за счет, за различение конкретных и абстрактных слов. Показаны различия в работе нейрон ов при восприятии слова родного языка (чашка), квазислова родного языка (чохна) и слова иностранного (вахт - время по-азербайджански).

В этой деятельности по-разному участвуют нейрон ы коры и глубоких структур мозга. В глубоких структурах в основном наблюдается увеличение частоты электрических разрядов, не очень "привязанное" к какой-то определенной зоне. Эти нейрон ы как бы любую
задачу решают всем миром. Совершенно другая картина в коре головного мозга. Один нейрон словно говорит: "А ну-ка, ребята, помолчите, это мое дело, и я буду выполнять его сам". И действительно, у всех нейрон ов, кроме некоторых, понижается частота импульсации, а у "избранников" повышается.

Благодаря технике позитронно-эмиссионной томографии (или сокращенно ПЭТ) стало возможно детальное изучение одновременно всех областей мозга, отвечающих за сложные "человеческие" функции. Суть метода состоит в том, что малое количество изотопа вводят в вещество, участвующее в химических превращениях внутри клеток мозга, а затем наблюдают, как меняется распределение этого вещества в интересующей нас области мозга. Если к этой области усиливается приток глюкозы с радиоактивной меткой - значит, увеличился обмен веществ, что говорит об усиленной работе нервных клеток на этом участке мозга.

А теперь представьте, что человек выполняет какое-то сложное задание, требующее от него знания правил орфографии или логического мышлени я. При этом у него наиболее активно работают нервные клетки в области мозга, "ответственной" именно за эти навыки. Усиление работы нервных клеток можно зарегистрировать с помощью ПЭТ по увеличению кровотока в активизированной зоне. Таким образом удалось определить, какие области мозга "отвечают" за синтаксис, орфографию, смысл речи и за решение других задач. Например, известны зоны, которые активизируются при предъявлении слов, неважно, надо их читать или нет. Есть и зоны, которые активизируются, чтобы "ничего не делать", когда, например, человек слушает рассказ, но не слышит его, следя за чем-то другим.

Что такое внимание?

Не менее важно понять, как "работает" внимание у человека. Этой проблемой в нашем институте занимается и моя лаборатория, и лаборатория Ю. Д. Кропотова. Исследования ведутся совместно с коллективом ученых под руководством финского профессора Р. Наатанена, который открыл так называемый механизм непроизвольн ого внимания. Чтобы понять, о чем идет речь, представьте ситуацию: охотник крадется по лесу, выслеживая добычу. Но он и сам является добычей для хищного зверя, которого не замечает, потому что настроен только на поиск оленя или зайца. И вдруг случайный треск в кустах, может быть, и не очень заметный на фоне птичьего щебета и шума ручья, мгновенно переключает его внимание, подает сигнал: "Рядом опасность". Механизм непроизвольн ого внимания сформировался у человека в глубокой древности, как охранный механизм, но работает и сейчас: например, водитель ведет машину, слушает радио, слышит крики детей, играющих на улице, воспринимает все звуки окружающего мира, внимание его рассеянно, и вдруг тихий стук мотора мгновенно переключает его внимание на машину - он осознает, что с двигателем что-то не в порядке (кстати, это явление похоже на детект ор ошибок).

Такой переключатель внимания работает у каждого человека. Мы обнаружили зоны, которые активизируются на ПЭТ при работе этого механизма, а Ю. Д. Кропотов исследовал его с помощью метода имплантированных электродов. Иногда в самой сложной научной работе бывают смешные эпизоды. Так было, когда мы в спешке закончили эту работу перед очень важным и престижным симпозиумом. Ю. Д. Кропотов и я поехали на симпозиум делать доклады, и только там с удивлением и "чувством глубокого удовлетворения" неожиданно выяснили, что активизация нейрон ов происходит в одних и тех же зонах. Да, иногда двоим сидящим рядом надо поехать в другую страну, чтобы поговорить.

Если механизмы непроизвольн ого внимания нарушаются, то можно говорить о болезни. В лаборатории Кропотова изучают детей с так называемым дефицитом внимания и гиперактивностью. Это трудные дети, чаще мальчики, которые не могут сосредоточиться на уроке, их часто ругают дома и в школе, а на самом деле их нужно лечить, потому что у них нарушены некоторые определенные механизмы работы мозга. Еще недавно это явление не рассматривалось как болезнь и лучшим методом борьбы с ним считались "силовые" методы. Мы сейчас можем не только определить это заболевание, но и предложить методы лечения детей с дефицитом внимания.

Однако хочется огорчить некоторых молодых читателей. Далеко не каждая шалость связана с этим заболеванием, и тогда... "силовые" методы оправданы.

Кроме непроизвольн ого внимания есть еще и селективное. Это так называемое "внимание на приеме", когда все вокруг говорят разом, а вы следите только за собеседником, не обращая внимания на неинтересную вам болтовню соседа справа. Во время эксперимента испытуемому рассказывают истории: в одно ухо - одну, в другое - другую. Мы следим за реакцией на историю то в правом ухе, то в левом и видим на экране, как радикально меняется активизация областей мозга. При этом активизация нервных клеток на историю в правом ухе значительно меньше - потому, что большинство людей берут телефонную трубку в правую руку и прикладывают ее к правому уху. Им следить за историей в правом ухе проще, нужно меньше напрягаться, мозг возбуждается меньше.

Я мыслю - следовательно, существую!

Уже много лет фантасты пишут о миниатюрных устройствах, которые вживляются в головной мозг и позволяют человеку с помощью мыслей управлять приборами и машинами. Невозможно, скажете вы? Оказывается, вовсе нет. По крайней мере, первый вариант подобных устройств уже создан и даже допущен к клиническим испытаниям.

Речь идет о чипе, созданном массачусетской компанией “Cyberkinetics”. Он представляет собой небольшую пластинку с электродами, которая вживляется лобную долю головного мозга человека и трансформирует нервные импульсы в электрические сигналы, которые передаются на персональный компьютер. С помощью этого чипа человек может, например, работать за компьютером (перемещать курсор и «кликать» на определенных элементах интерфейса), а при небольшой его доработке даже управлять сложными электромеханическими устройствами – в частности, протезами. Предполагается, что он будет использоваться для улучшения качества жизни людей, больных церебральным параличом или другими заболеваниями, сопровождающимися нарушением нервно-мышечной передачи.

Сейчас “Cyberkinetics” готовится к началу клинических испытаний, в которых примут участие шестеро больных. Соответствующие разрешения от американского Управления по лекарствам и пищевым продуктам (FDA) уже получены. Остается только надеяться, что испытания закончатся успехом.


И вы еще говорите о "взаимопонимании"? ;)

Вряд ли кто-то будет спорить с утверждением о том, что женщины и мужчины решают одни и те же задачи по-разному. И, оказывается, это объясняется не только особенностями мужской и женской психологии, но и определенными различиями в строении головного мозга.

Изучая особенности строения головного мозга различных людей, ученые из Университета Калифорнии обнаружили, что у мужчин и женщин, даже обладающих одинаковыми интеллектуальными способностями, в некоторых зонах головного мозга резко отличается соотношение серого и белого вещества. Так, оказалось, что в "интеллектуальных центрах" (зонах, ответственных за логический анализ и обработку абстрактной информации) головного мозга мужчин содержится примерно в шесть раз больше серого вещества, чем у женщин. Зато у женщин в этих же зонах содержится в девять раз больше белого вещества, чем у мужчин. Учитывая тот факт, что серое вещество - это преимущественно тела нервных клеток, то есть "структурные элементы" мозга, обеспечивающие собственно обработку информации, а белое вещество - это отростки нейрон ов, передающих информацию, картина становится довольно интересной. Из полученных исследователями данных можно сделать вывод о том, что женский и мужской мозг имеют принципиально разную физиологию - они используют разные "базовые принципы" обработки и анализа поступающих извне сигналов, а также по-разному реагируют на стимулы, соответствующие решению абстрактных задач.

Исследователи выявили и некоторые другие различия между мужским и женским мозгом, объясняющие основные особенности поведения представителей разных полов. Так, оказалось, что при решении логических задач у женщин активируются преимущественно зоны коры, расположенные в лобной доле мозга - там, где находятся центры контроля движений, эмоций и речи. По мнению специалистов, это объясняет высокую эмоциональность женщин, а также характерную для них черту - склонность к принятию не логических, а "чувственно-эмоциональных" решений. А вот у мужчин логические центры оказываются тесно сопряжены в первую очередь с зонами, ответственными за обработку внешних стимулов. Именно поэтому, считают ученые, мужчины склонны более тщательно взвешивать все факторы и выносить четко обоснованные логические решения.

"Мы ни в коем случае не хотим сказать, что женщины имеют меньше интеллектуальные способности, чем мужчины, или наоборот, - прокомментировал полученные результаты один из авторов этого исследования, профессор психологии Ричард Хейер. - Но факт остается фактом - строение головного мозга мужчины принципиально отличается от строения головного мозга женщины. И даже если мужчина и женщина решают поставленные перед ними задачи одинаково эффективно, они используют при этом принципиально разные алгоритм ы."

Интересные результаты дает такой эксперимент. Испытуемому рассказывают одновременно две разные истории: в левое ухо одну, в правое - другую. На фото1 изображены разные проекции мозга - стрелками отмечены активизированные зоны, когда внимание сосредоточено на истории, рассказываемой в левое ухо. Внимание испытуемого "переключилось" на "историю в правом ухе" (фото 2). Можно заметить, что для фиксации внимания на "историю в правом ухе" требуется гораздо меньшая активность мозга. Это связано с праворукостью большинства людей - обычно они берут телефонную трубку правой рукой и прикладывают ее к правому уху.
ЗОНЫ ПЕРВИЧНОЙ ОБРАБОТКИ ЦВЕТА

ЗОНЫ, УЧАСТВУЮЩИЕ В ОБРАБОТКЕ СИНТАКСИЧЕСКОЙ СТРУКТУРЫ ПРЕДЛОЖЕНИЙ

ЗОНА ОРФОГРАФИЧЕСКОЙ ОБРАБОТКИ СЛОВ

ОБЛАСТЬ, УЧАСТВУЮЩАЯ В СОЗНАТЕЛЬНОЙ И НЕПРОИЗВОЛЬН ОЙ ОБРАБОТКЕ СМЫСЛ А СЛОВ

ОБЛАСТИ, ПРЕДПОЛОЖИТЕЛЬНО УПРАВЛЯЮЩИЕ ПОДАВЛЕНИЕМ ОБРАБОТКИ РЕЧЕВЫХ ПРИЗНАКОВ В ЗАДАЧЕ НА ОБРАБОТКУ ФИЗИЧЕСКОГО ПРИЗНАКА СЛОВА, НАПРИМЕР ЦВЕТА

Человек летает в космос и погружается в морские глубины, создал цифровое телевидение и сверхмощные компьютеры. Однако сам механизм мыслительного процесса и орган, в котором происходит умственная деятельность, как и причины, побуждающие нейроны взаимодействовать, до сих пор остаются загадкой.

Головной мозг – важнейший орган человеческого организма, материальный субстрат высшей нервной деятельности. От него зависит, что человек чувствует, делает, о чем думает. Мы слышим не ушами и видим не глазами, а соответствующими участками коры головного мозга. Он же вырабатывает гормоны удовольствия, вызывает прилив сил и утоляет боль. В основе нервной деятельности лежат рефлексы, инстинкты, эмоции и другие психические явления. Научное понимание работы мозга все еще отстает от понимания функционирования всего организма в целом. Это, безусловно, связано с тем, что мозг – гораздо более сложный орган по сравнению с любым другим. Мозг – самый сложный объект в известной нам вселенной.

Справка

У человека отношение массы головного мозга к массе тела в среднем равно 2%. А если поверхность этого органа разгладить, получится примерно 22 кв. метра органики. Мозг содержит около 100 миллиардов нервных клеток (нейронов). Чтобы вы могли представить себе это количество, напомним: 100 миллиардов секунд – это примерно 3 тысячи лет. Каждый нейрон контактирует с 10 тысячами других. И каждый из них способен к высокоскоростной передаче импульсов, поступающих от одной клетки к другой химическим путем. Нейроны могут одновременно взаимодействовать с несколькими другими нейронами, в том числе находящимися в удаленных отделах мозга.

Только факты

  • Мозг – лидер по энергопотреблению в организме. На него работает 15% сердца, и он потребляет около 25% кислорода, захватываемого легкими. Для доставки кислорода к мозгу работают три крупные артерии, которые предназначены для его постоянной подпитки.
  • Около 95% тканей мозга окончательно формируются к 17 годам. К концу пубертатного периода мозг человека составляет полноценный орган.
  • Головной мозг не чувствует боли. В мозге нет болевых рецепторов: зачем они, если разрушение мозга приводит к смерти организма? Дискомфорт может чувствовать оболочка, в которую заключен наш мозг, – так мы испытываем головную боль.
  • У мужчин мозг обычно больше, чем у женщин. Средний вес головного мозга взрослого мужчины – 1375 г, взрослой женщины – 1275 г. Они также различаются размерами различных областей. Однако учеными доказано, что это не имеет отношения к интеллектуальным способностям, а самый большой и тяжелый мозг (2850 г), который описывали исследователи, принадлежал пациенту психиатрической больницы, страдающему идиотизмом.
  • Человек использует практически все ресурсы своего мозга. То, что мозг работает всего на 10%, – миф. Ученые доказали, что имеющиеся резервы мозга человек задействует в критических ситуациях. Например, когда кто-то убегает от злой собаки, он может перепрыгнуть через высокий забор, который в обычных условиях он ни за что не преодолел бы. В экстренный момент в мозг вливаются определенные вещества, которые стимулируют действия того, кто оказался в критической ситуации. По сути, это допинг. Однако проделывать такое постоянно опасно – человек может умереть, потому что исчерпает все свои резервные возможности.
  • Мозг можно целенаправленно развивать, тренировать. Например, полезно заучивать тексты наизусть, решать логические и математические задачи, изучать иностранные языки, познавать новое. Также психологи советуют правшам периодически «главной» рукой делать левую, а левшам – правую.
  • Мозг обладает свойством пластичности. Если поражен один из отделов нашего важнейшего органа, другие через некоторое время смогут компенсировать его утраченную функцию. Именно пластичность мозга играет исключительно важную роль в овладении новыми навыками.
  • Клетки головного мозга восстанавливаются. Синапсы, связывающие нейроны, и сами нервные клетки важнейшего из органов регенерируются, но не так быстро, как клетки других органов. Пример тому – реабилитация людей после черепно-мозговых травм. Ученые обнаружили, что в отделе мозга, отвечающего за обоняние, из клеток-предшественниц образуются зрелые нейроны. В нужный момент они помогают «починить» травмированный мозг. Ежедневно в его коре могут образовываться десятки тысяч новых нейронов, однако впоследствии может прижиться не больше десяти тысяч. Сегодня известны две области активного прироста нейронов: зона памяти и зона, ответственная за движения.
  • Мозг активно работает во время сна. Человеку важно иметь память. Она бывает долгосрочная и краткосрочная. Перевод информации из краткосрочной в долгосрочную память, запоминание, «раскладывание по полочкам», осмысление информации, которую человек получает в течение дня, происходит именно во сне. А чтобы тело не повторяло в реальности движения из сна, мозг выделяет особый гормон.

Мозг способен значительно ускорять свою работу. Люди, пережившие ситуации угрозы для жизни, говорят, что за миг перед их глазами «пролетела вся жизнь». Ученые считают, что мозг в момент опасности и осознания грозящей смерти в сотни раз ускоряет работу: ищет в памяти аналогичные обстоятельства и способ помочь человеку успеть себя спасти.

Всестороннее изучение

Проблема исследования мозга человека – одна из самых захватывающих задач науки. Поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось: и атом, и галактика, и мозг животного – было проще мозга человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь главное средство познания не приборы и не методы, им остается наш человеческий мозг.

Существуют различные методы исследования. В первую очередь в практику ввели клинико-анатомическое сопоставление – смотрели, какая функция «выпадает» при повреждении определенной области мозга. Так, французский ученый Поль Брока 150 лет назад обнаружил центр речи. Он заметил, что у всех больных, которые не могут говорить, поражена определенная область мозга. Электроэнцефалография изучает электрические свойства мозга – исследователи смотрят, как электрическая активность разных участков мозга меняется в соответствии с тем, что делает человек.

Электрофизиологи регистрируют электрическую активность «мыслительного центра» организма с помощью электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии. При тяжелейших заболеваниях мозга тонкие электроды могут вживляться в ткань органа. Это позволило получить важную информацию о механизмах работы мозга по обеспечению высших видов деятельности, были получены данные о соотношении коры и подкорки, о компенсаторных возможностях. Еще один метод изучения мозговых функций – электрическая стимуляция отдельных областей. Так канадским нейрохирургом Уайлдером Пенфилдом был исследован «моторный гомункулус». Было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение разных частей тела, и установлено представительство различных мышц и органов. В 1970-е годы, после изобретения компьютеров, представилась возможность еще более полно исследовать внутренний мир нервной клетки, появились новые методы интроскопии: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. В последние десятилетия активно развивается метод нейровизуализации (наблюдение за реакцией отдельных частей мозга после введения определенных веществ).

Детектор ошибок

Очень важное открытие было сделано в 1968 году – ученые обнаружили детектор ошибок. Это механизм, который дает нам возможность производить рутинные действия, не задумываясь: например, умываться, одеваться и одновременно думать о своих делах. Детектор ошибок в подобных обстоятельствах все время следит, правильно ли вы действуете. Или, например, человек внезапно начинает чувствовать себя некомфортно – он возвращается домой и обнаруживает, что забыл выключить газ. Детектор ошибок позволяет нам даже не задумываться о десятках задач и решать их «на автомате», сходу отметая недопустимые варианты действий. За последние десятилетия наука узнала, как устроены многие внутренние механизмы человеческого организма. Например, путь, по которому зрительный сигнал доходит от сетчатки до мозга. Для решения более сложной задачи – мышления, опознания сигнала – задействована большая система, которая распространена по всему мозгу. Однако «центр управления» пока не найден и даже неизвестно, есть ли он.

Гениальный мозг

С середины XIX века ученые делали попытки изучения анатомических особенностей мозга людей с выдающимися способностями. На многих медицинских факультетах Европы хранились соответствующие препараты, в том числе и профессоров медицины, которые еще при жизни завещали свой мозг науке. От них не отставали русские ученые. В 1867 году на Всероссийской этнографической выставке, устроенной Императорским обществом любителей естествознания, было представлено 500 черепов и препаратов их содержимого. В 1887 году анатом Дмитрий Зернов опубликовал результаты исследования мозга легендарного генерала Михаила Скобелева. В 1908 году академик Владимир Бехтерев и профессор Рихард Вейнберг исследовали подобные препараты покойного Дмитрия Менделеева. Аналогичные препараты органов Бородина, Рубинштейна, математика Пафнутия Чебышева сохранены в анатомическом музее Военно-медицинской академии в Санкт-Петербурге. В 1915 году нейрохирург Борис Смирнов подробно описал мозг химика Николая Зинина, патолога Виктора Пашутина и писателя Михаила Салтыкова-Щедрина. В Париже был исследован мозг Ивана Тургенева, вес которого достигал рекордных 2012 г. В Стокгольме работали с соответствующими препаратами знаменитых ученых, в том числе Софьи Ковалевской. Специалисты Московского института мозга тщательно исследовали «мыслительные центры» вождей пролетариата: Ленина и Сталина, Кирова и Калинина, изучали извилины великого тенора Леонида Собинова, писателя Максима Горького, поэта Владимира Маяковского, режиссера Сергея Эйзенштейна... Сегодня ученые убеждены в том, что, на первый взгляд, мозг талантливых людей ничем не выделяется из ряда среднестатистических. Эти органы различаются структурой, размерами, формой, однако от этого ничего не зависит. Мы до сих пор не знаем, что именно делает человека талантливым. Можем только предполагать, что мозг таких людей немножко «сломан». Он может делать то, чего не могут нормальные, а значит, он не такой, как все.