Гистология: понятие о тканях, классификация тканей

Ткань – это возникшая в процессе эволюции система клеток и неклеточных структур, объединённых общностью строения и выполняемых функций (желательно определение знать наизусть и понимать значение: 1) ткань возникла в процессе эволюции, 2) это система клеток и неклеточных структур, 3) имеется общность строения, 4) система клеток и неклеточных структур, которые входят в состав данной ткани, имеют общие функции).

Структурно-функциональные элементы тканей подразделяются на: гистологические элементы клеточного (1) и неклеточного типа (2) . Структурно-функциональные элементы тканей человеческого организма можно сравнить с разными нитками, из которых состоят ткани текстильные.

Гистологический препарат «Гиалиновый хрящ»: 1 — клетки хондроциты, 2 — межклеточное вещество (гистологический элемент неклеточного типа)

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры , в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, которые являются частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения, роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна . Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

На фотографии — гистологический препарат «Рыхлая волокнистая соединительная ткань»: хорошо видны клетки, между которыми межклеточное вещество (волокна — полоски, аморфное вещество — светлые участки между клетками).

2. Классификация тканей . В соответствии с морфофункциональной классификацией тканей различают: 1) эпителиальные ткани, 2) ткани внутренней среды: соединительные и кроветворные, 3) мышечные и 4) нервную ткань.

3. Развитие тканей. Теория дивергентного развития тканей по Н.Г. Хлопину предполагает, что ткани возникли в результате дивергенции — расхождения признаков в связи с приспособлением структурных компонентов к новым условиям функционирования. Теория параллельных рядов по А.А. Заварзину описывает причины эволюции тканей, согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

Как из одной клетки — зиготы образуется такое разнообразие структур? За это отвечают такие процессы как ДЕТЕРМИНАЦИЯ, КОММИТИРОВАНИЕ, ДИФФЕРЕНЦИРОВКА. Попробуем разобраться с этими терминами.

Детерминация – это процесс, определяющий направление развития клеток, тканей из эмбриональных зачатков. В ходе детерминации клетки получают возможность развиваться в определённом направлении. Уже на ранних стадиях развития, когда происходит дробление, появляются два вида бластомеров: светлые и тёмные. Из светлых бластомеров не смогут впоследствии образоваться, например, кардиомиоциты, нейроны, поскольку они детерминированы и их направление развития — эпителий хориона. У этих клеток сильно ограничены возможности (потенции) развиваться.

Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием . Например, если из клеток первичной эктодермы в двуслойном зародыше ещё могут развиться клетки почечной паренхимы, то при дальнейшем развитии и образовании трёхслойного зародыша (экто-, мезо- и энтодерма) из вторичной эктодермы — только нервная ткань, эпидермис кожи и некоторое другое.

Детерминация клеток и тканей в организме, как правило, необратима: клетки мезодермы, которые выселились из первичной полоски для образования почечной паренхимы обратно превратиться в клетки первичной эктодермы не смогут.

Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов).

Дифферон – это гистогенетический ряд клеток одного типа, находящихся на разных этапах дифференцировки. Как люди в автобусе — дети, молодёжь, взрослые, пожилые. Если в автобусе будут перевозить кошку с котятами, то можно сказать, что в автобусе «два дифферона — людей и кошек».

В составе дифферона по степени дифференцировки различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки - предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки — бласты , вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки — заканчивающие дифференцировку; д) зрелые (дифференцированные) клетки, которые заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют; е) старые клетки — закончившие активное функционирование.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки , т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли).

Пример дифференцировки структур с образованием мышечного волокна (последовательные стадии развития).

Зигота — бластоциста — внутренняя клеточная масса (эмбриобласт) — эпибласт — мезодерма — несегментированная мезодерма — сомит — клетки миотома сомита — миобласты митотические — миобласты постмитотические — мышечная трубочка — мышечное волокно.

В приведённой схеме от этапа к этапу ограничивается количество потенциальных направлений дифференцировки. Клетки несегментированной мезодермы имеют возможности (потенции) к дифференцировке в различных направлениях и образованию миогенного, хондрогенного, остеогенного и других направлений дифференцировки. Клетки миотома сомитов детерминированы к развитию только в одном направлении, а именно к образованию миогенного клеточного типа (поперечнополосатая мышца скелетного типа).

Клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку. По способности к самообновлению путём деления клеток выделяют 4 категории клеточных популяций (по Леблону):

- Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

- Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

- Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

- Обновляющаяся популяция состоит из клеток, постоянно и быстро делящихся, а также специализированных функционирующих потомков этих клеток, продолжительность жизни которых ограничена. Например, эпителии кишечника, кроветворные клетки.

К особому типу клеточных популяций относят клон – группа идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

4. Регенерация тканей – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация).

Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

- Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

- Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

- Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например, кровь содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие клеточные популяции. Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок.

Помимо тканевой и клеточной регенерации путем деления клеток существует внутриклеточная регенерация — процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная ткань, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции.

Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, — обычно является следствием а) гипертрофии клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации ) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

5. Межтканевые и межклеточные отношения. Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и адгезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и адгезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул адгезии . Прикрепление происходит с помощью особых субклеточных структур: а) точечных адгезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных соединений (прикрепление клеток друг к другу).

Межклеточные соединения — специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) адгезионные клеточные соединения , выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты , функция которых — образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты , функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

6. Регуляция жизнедеятельности тканей. В основе регуляции тканей – три системы: нервная, эндокринная и иммунная. Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто- или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста , колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон . Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимно перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны – гормоноподобные регуляторы пролиферации клеток: тормозят митозы и стимулируют дифференцировку клеток. Кейлоны действуют по принципу обратной связи: при уменьшении количества зрелых клеток (например, потеря эпидермиса при травме) количество кейлонов уменьшается, а деление малодифференцированных камбиальных клеток усиливается, что проводит к регенерации ткани.

В человеческом теле существует много различных по форме и типу клеток. Их всегда можно отличить, особенно здоровые от больных. Этим и занимается отдельная область медицины - гистология. Специалисты патологической гистологии исследуют подозрительные клетки тканей. Они осматривают, анализируют и оценивают клетки ткани с помощью обычного и электронного микроскопа. Уже через несколько минут (или дней) гистолог может сказать здоровы или нет клетки тканевой пробы, взятой для анализа. Гистологические исследования особенно важны при диагностике рака.

Показания для гистологического анализа

Для определения поражения ткани воспалением, инфекцией проводятся гистологические исследования. Часто гистологически оценивают и кисты, и узлы и частицы кожных пятен, таким образом, подтверждают или опровергают возможность рака. Пробы тканей желез и других органов гистологически исследуются для определения насколько сохранились их функции.

Как проводится анализ?

Работники гистологических лабораторий часто получают материал прямо из операционных и нередко должны незамедлительно провести анализ. В течение времени, пока исследуются ткани, пациент находится под наркозом на операционном столе. Специалисты-гистологи, выполнив экстренный анализ пробы, могут ответить: является ли ткань здоровой, поражена ли воспалением, имеются ли показания на наличие опухоли.

Экстренный анализ

При желании срочно оценить полученный материал его необходимо безотлагательно заморозить и разрезать на тоненькие полоски, которые позже будут исследованы под микроскопом. Применяя этот метод, невозможно точно определить является ли эта опухолевая ткань доброкачественной или злокачественной. Поэтому остатки тканевой пробы основательно анализируются. В зависимости от цели исследования они либо покрываются воском, либо подготавливаются для более точного микроскопического анализа.

Как отделить различные клетки?

Для того, чтобы результаты, полученные с помощью обычного или электронного микроскопа, были более точными, необходимо из клеточного материала удалить воду. После чего исследуемая ткань «скручивается» и с помощью очень точного прибора (микротома) нарезается на несколько десятков тысяч долей миллиметра тонкими полосками, которые помещают на стекло под микроскопом и окрашивают. Каждой клетке и каждой составной части клетки характерны специфические химические реакции. Таким образом, при окрашивании можно рассмотреть структуры, которые иначе не удается увидеть с помощью микроскопа. Только так гистолог может оценить пробу материала, сравнить ее со здоровой тканью того же типа и установить диагноз.

Для диагностирования некоторых болезней каждый срез ткани окрашивается специальными красителями. Тогда пораженные клетки или в них скопившиеся остатки обмена веществ окрашиваются в другой цвет нежели здоровые клетки. Клетки ткани исследуются и иммуногистохимическим методом - на пробу капают раствором с определенным антигеном, который соединяется с антителами, находящимися на поверхности клетки.

Для получения культуры клеток образец ткани погружают в питательную среду (жидкую или желеобразную). Симптомом рака может быть скорость размножения клеток, т.к. раковые клетки размножаются быстро и неконтролируемо.

Для полного и точного гистологического исследования необходимо время. Окончательный результат получают только через неделю, а иногда и позже. Зато сомневаться в достоверности результата не приходится.








Кожа – покрыта многослойным чешуйчатым (плоским) ороговевающим эпителием; Полость рта, глотки, пищевод, конечный отдел прямой кишки – покрыты многослойным неороговевающим эпителием; Слизистая оболочка мочевыводящих путей – покрыта переходным эпителием(мезотелия); Желудок, трахея, бронхи – однослойным столбчатым эпителием; Серозные оболочки (брюшина, плевра) - выстланы однослойным плоским эпителием. Сальные, потовые, слёзные, поджелудочная, щитовидная и т.д. - построены из железистого эпителия.


Соединительная ткань. Соединительная ткань, или ткани внутренней среды, представлена разнообразной по структуре и функциям группой тканей, которые располагаются внутри организма и не граничат ни с внешней средой, ни с полостями органов. Соединительная ткань защищает, изолирует и поддерживает части тела, а также выполняет транспортную функцию внутри организма (кровь). Например, ребра защищают органы грудной клетки, жир служит прекрасным изолятором, позвоночник поддерживает голову и туловище, кровь переносит питательные вещества, газы, гормоны и продукты обмена. Во всех случаях соединительная ткань характеризуется большим количеством межклеточного вещества. Выделяют следующие подтипы соединительной ткани: собственно соединительную (рыхлую, жировую, ретикулярную, плотную волокнистую), хрящевую, костную, а также кровь.



Собственно соединительная ткань. Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью. Соединительная ткань выполняет опорную, защитную (механическую) функции. Рыхлая соединительная ткань имеет сеть из эластичных и упругих (коллагеновых) волокон, расположенных в вязком межклеточном веществе. Эта ткань окружает все кровеносные сосуды и большинство органов, а также подстилает эпителий кожи.


Жировая. Рыхлая соединительная ткань, содержащая большое количество жировых клеток, называется жировой тканью; она служит местом запасания жира и источником образования воды. Некоторые части тела более, чем другие, способны накапливать жир, например под кожей или в сальнике. фиброзная ткань Рыхлая ткань содержит и другие клетки – макрофаги и фибробласты. Макрофаги фагоцитируют и переваривают микроорганизмы, разрушившиеся клетки тканей, чужеродные белки и старые клетки крови; их функцию можно назвать санитарной. Фибробласты ответственны главным образом за образование волокон в соединительной ткани.


Ретикулярная. Состоит из ретикулярных клеток и ретикулярных волокон. Образует остов кроветворных органов и органов иммунной системы (костный мозг, тимус, селезенка, лимфатические узлы, групповые и одиночные лимфоидные узелки). В петлях образованных ретикулярной тканью, располагаются кровеобразующие и иммунокомпетентные клетки.


Плотная волокнистая Неоформленная соединительная ткань. Состоит из множества соединительнотканных волокон густо переплетенных. Плотная оформленная соединительная ткань отличается упорядоченным расположением пучков волокон, определенным их направлением (связки, сухожилия).


Хрящевая. Соединительная ткань с плотным межклеточным веществом представлена либо хрящом, либо костью. Хрящ обеспечивает прочную, но гибкую основу органов. Наружное ухо, нос и носовая перегородка, гортань и трахея имеют хрящевой скелет. Основная функция этих хрящей состоит в поддержании формы различных структур. Хрящевые кольца трахеи препятствуют его спадению и обеспечивают продвижение воздуха в легкие. Хрящи между позвонками делают их подвижными относительно друг друга.


Костная. Кость представляет собой соединительную ткань, межклеточное вещество которой состоит из органического материала (оссеина) и неорганических солей, главным образом фосфатов кальция и магния. В ней всегда присутствуют специализированные костные клетки – остеоциты (видоизмененные фибробласты), рассеянные в межклеточном веществе. В отличие от хряща кость пронизана большим количеством кровеносных сосудов и некоторым числом нервов. С внешней стороны она покрыта надкостницей (периостом). Надкостница является источником клеток-предшественников остеоцитов, и восстановление целости кости – одна из ее основных функций.




– это соединительная ткань с жидким межклеточным веществом, плазмой, составляющей немногим более половины общего объема крови. Плазма содержит белок фибриноген, который при соприкосновении с воздухом или при повреждении кровеносного сосуда образует в присутствии кальция и факторов свертывания крови фибриновый сгусток, состоящий из нитей фибрина. Прозрачная желтоватая жидкость, остающаяся после образования сгустка, называется сывороткой. В плазме находятся различные белки (в т.ч. антитела), продукты метаболизма, питательные вещества (глюкоза, аминокислоты, жиры), газы (кислород, углекислый газ и азот), разнообразные соли и гормоны. В среднем у взрослого мужчины около 5 л крови.


Мышечная ткань. Мышцы обеспечивают передвижение организма в пространстве, его позу и сократительную активность внутренних органов. Способность к сокращению, в какой-то степени присущая всем клеткам, в мышечных клетках развита наиболее сильно. Выделяют три типа мышц: скелетные (поперечнополосатые, или произвольные), гладкие (висцеральные, или непроизвольные) и сердечную


Скелетные мышцы. Клетки скелетных мышц представляют собой длинные трубчатые структуры, число ядер в них может доходить до нескольких сотен. Их основными структурными и функциональными элементами являются мышечные волокна (миофибриллы), имеющие поперечную исчерченность. Скелетные мышцы стимулируются нервами (концевыми пластинками двигательных нервов); они реагируют быстро и контролируются в основном произвольно. Например, под произвольным контролем находятся мышцы конечностей, тогда как диафрагма зависит от него лишь опосредованно.


Гладкие мышцы состоят из веретенообразных одноядерных клеток с фибриллами, лишенными поперечных полос. Эти мышцы действуют медленно и сокращаются непроизвольно. Они выстилают стенки внутренних органов (кроме сердца). Благодаря их синхронному действию пища проталкивается через пищеварительную систему, моча выводится из организма, регулируются кровоток и кровяное давление, яйцеклетка и сперма продвигаются по соответствующим каналам.





Нервная ткань характеризуется максимальным развитием таких свойств, как раздражимость и проводимость. Раздражимость – способность реагировать на физические (тепло, холод, свет, звук, прикосновение) и химические (вкус, запах) стимулы (раздражители). Проводимость – способность передавать возникший в результате раздражения импульс (нервный импульс). Элементом, воспринимающим раздражение и проводящим нервный импульс, является нервная клетка (нейрон).


Нейрон состоит из тела клетки, содержащего ядро, и отростков – дендритов и аксона. Каждый нейрон может иметь много дендритов, но только один аксон, у которого бывает, однако, несколько ветвей. Дендриты, воспринимая стимул от разных участков мозга или с периферии, передают нервный импульс на тело нейрона.


От тела клетки нервный импульс проводится по одиночному отростку – аксону – к другим нейронам или эффекторным органам. Аксон одной клетки может контактировать либо с дендритами, либо с аксоном или телами других нейронов, либо с мышечными или железистыми клетками; эти специализированные контакты называются синапсами. Аксон, отходящий от тела клетки, покрыт оболочкой, которую образуют специализированные (шванновские) клетки; покрытый оболочкой аксон называют нервным волокном. Пучки нервных волокон составляют нервы. Они покрыты общей соединительнотканной оболочкой, в которую по всей длине вкраплены эластические и неэластические волокна и фибробласты (рыхлая соединительная ткань). В головном и спинном мозгу присутствует еще один тип специализированных клеток – клетки нейроглии. Это вспомогательные клетки, содержащиеся в мозгу в очень большом количестве. Их отростки оплетают нервные волокна и служат для них опорой, а также, по-видимому, и изоляторами. Кроме того, они имеют секреторную, трофическую и защитную функции. В отличие от нейронов клетки нейроглии способны к делению

Происхождение и классификация тканей

Гистогенез - единый комплекс координированных во времени и пространстве процессов пролиферации, дифференцировки, детерминации, интеграции функциональной адаптации клеток.

Под пролиферацией понимают рост и размножение тканевых клеток с увеличением их числа и массы живого вещества.

Тканевые клетки подвергаются дифференцировке, в результате чего они специализируются (накопление органелл специального назначения, например, миофибрилл и пр.) и возникают структурные и функциональные различия между клетками.

В результате последующей детерминации происходит необратимого закрепления результатов клеточной дифференцировки.

В процессе гистогенеза по мере усиления дифференцировки тканевых клеток повышается степень их интеграции, так как дифференциация и интеграция составляют диалектическое единство процесса развития.

Под функциональной адаптацией клеток развивающейся ткани понимают приспособление их к конкретным условиям функционирования.

Ткань - система специфически дифференцированных и интегрированных клеток и их производных, имеющих однотипную фило- и онтогенетическую детерминацию.

В организме многих животных и человека различают четыре типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань (эпителий)

Эпителиальная ткань образует покров, одевающий организм снаружи и выстилающий все его полости и полые органы изнутри.

Характерные черты любого эпителия - оформление в пласт, лежащий на границе с соединительной тканью; наличие разной дифференцировки у закрепленного и свободного концов клеток (гетерополярность); отсутствие сосудов в толще пласта, который питается осмотически; наличие на границе пласта и соединительной ткани базальной мембраны; насыщение пласта нервными разветвлениями и окончаниями, подвержена нейрогуморальной регуляции, отличается высокой регенеративной способностью.

По функциональным особенностям различают эпителий поверхностный несущего пограничную функцию и железистый, который является «аппаратом» секреции.

Поверхностный эпителий

По характеру сложения и отношения, слагающих эпителий клеток к базальной мембране, он может быть однослойным, многослойным и псевдомногослойным.

Многослойный эпителий слагается из клеток разнообразной формы, образующих многослойный пласт, при этом только клетки базального слоя лежат на базальной мембране.

Псевдомногослойный эпителий состоит из клеток разнообразной формы, причем одни из них образуют поверхностный слои, а другие вклиниваются в него. Часть клеток этого слоя лежит на базальной мембране.

Однослойный (простой) эпителий. По форме клеток может быть плоским, кубическим и цилиндрическим (столбчатым).

Простой сквамозньй эпителий (мезотелий) состоит из плоских клеток многогранной формы, выстилает поверхность сальника, висцеральной и париетальной брюшины, плевры, перикарда. Функция мезотелия - разграничительная.

Эндотелий - форма поверхностного эпителия. Он образует выстилку кровеносных и лимфатических сосудов и представлен однослойным пластом плоских клеток с неправильными границам.

Пигментный эпителий сетчатки является также однослойным плоским, в составе которого находятся пигментные эпителиоциты. Функция пигментного эпителия сетчатки глаза - защитная.

Простой кубический эпителий выстилает почечные канальцы, мелкие разветвления выводных протоков многих желез (печень, поджелудочная железа и др.) и мелкие бронхи легких. Функция эпителия - проводниковая (транспорт веществ).

Простой столбчатый эпителий образуется из мезодермы и встречается в почечных трубочках. Более сложная форма простого столбчатого эпителия - реснитчатый эпителий маточных труб и матки.

К сложной форме столбчатого эпителия относится и каемчатый эпителий - образует выстилку кишечника и желчного пузыря. Каемка состоит из большого количества микроворсинок, что способствует процессам всасывания.

Многослойный эпителий. Основные формы этого эпителия – неороговевающий многослойный плоский, ороговевающий многослойный плоский и переходный.

Неороговевающий многослойный плоский эпителий наблюдается в роговице глаза (передний эпителий), в слизистой оболочке рта, особенно мягкого неба, и пр.

Ороговевающий многослойный плоский эпителий (слоистый) - эпидермис, т.е. надкожица состоит из пяти слоев: базального, шиповатого, зернистого, блестящего и рогового. В его клетках тонофибриллы развиты лучше, чем у неороговевающего. Имеет ряд производных - волосы, ногти.

Переходный эпителий выстилает почечную лоханку, мочеточник, мочевой пузырь и отчасти мочеиспускательный канал, изменяет свое сложение в зависимости от функционального состояния органа, например мочевого пузыря.

Псевдомногослойный реснитчатый эпителий выстилает дыхательный аппарат, состоит из нескольких рядов клеток с ресничками (мерцание их кнаружи, что способствует удалению пыли из дыхательного аппарата). Между ними находятся одноклеточные железы - бокаловидные клетки, вырабатывающие слизь, которая увлажняет поверхность эпителия или поверхность слизистой оболочки дыхательных путей.

Все эпителии обладают хорошими способностями к регенерации и репарации.

Железистый эпителий несет секреторную функцию и образует железы внутренней и внешней секреции. Секреция - сложный процесс, состоящий из трех фаз: образования (синтеза), накопления и выделения секрета.

Мезенхима и ее производные

Мезенхима - самая ранняя эмбриональная соединительная ткань образуется из сомитов. Мезенхима - тканевая система зародыша. Из мезенхимного синцития образуются мезенхимные клетки, которые способны превращаться в макрофаги, элементы крови, клетки костной, хрящевой и других видов соединительной ткани. Мезенхима функционирует только до момента рождения.

Соединительная ткань

Соединительная ткань не образует пласта и в отличие от эпителия состоит из межклеточного вещества и клеток. Эта ткань выполняет трофическую, защитную и опорную функции.

Общим свойством всех видов соединительной ткани является четко выраженная способность к регенерации и большая пластичность. Это определяет функциональную адаптацию их на разных этапах развития. Соединительная ткань - комплексная структура. Различают следующие ее виды: кровь и лимфу, собственно соединительную ткань, хрящевую и костную ткани.

Кровь

Кровь - жидкая соединительная ткань. В организме человека кровь составляет 1/11- 1/13 (приблизительно 7 %) массы тела. У детей это соотношение больше. Плотность крови равна 1,050 - 1,060 кг/м. Кровь разделяется на форменные элементы - клетки (лейкоциты, эритроциты, тромбоциты, лимфоциты) и плазму (жидкость). Жидкая часть плазмы крови после свертывания, т.е. образования сгустка фибрина, составляет сыворотку.

Плазма крови состоит из воды, белков, липидов, углеводов, микроэлементов. Воды в плазме содержатся около 90%, белков 7 %.

Собственно соединительная ткань

Этот вид ткани слагается из следующих двух подвидов: волокнистая ткань и ткань с особыми свойствами. Волокнистая ткань может быть рыхлой неоформленной и плотной. Последняя встречается в виде оформленной (сухожилия, фиброзные мембраны, пластинчатая и эластические ткани) и неоформленной.

Рыхлая волокнистая соединительная ткань несет трофическую и защитную функции. Она встречается в коже, слизистых оболочках внутренних полых органов, в прослойках дольчатых органов и т. д. Состоит из клеток и межклеточного вещества. Межклеточное вещество возникает из клеток, и жизнедеятельность его поддерживается клетками. Оно состоит из основного (аморфного) вещества и волокон. Основное вещество образовано гелеобразными пластинками и тяжами. Основу геля составляют полисахариды, а также гиалуроновая кислота, гликопротеиды (комплексы белков и углеводов). В межклеточном веществе находятся коллагеновые, эластические волокна и непостоянные ретикулярные волокна.

Коллагеновые волокна - буквально «клей дающие волокна» имеют вид прямых или волнообразных лент диаметром 1-12 мкм, состоят из параллельно расположенных фибрилл толщиной 0,3-0,5 мкм.

Эластические волокна состоят из белкового вещества - эластина.

Ретикулярные волокна присутствуют там, где ткань связана с капиллярами, нервными и мышечными волокнами, в кроветворных органах, в печени. К клеткам рыхлой волокнистой соединительной ткани относятся фибробласты, перициты, ретикулярные (камбиальные) клетки, гистиоциты, липоциты, тканевые базофилы, пигментные клетки, плазмоциты, блуждающие лейкоциты.

Плотная волокнистая соединительная ткань делиться на:

Неоформленную плотную волокнистую соединительную ткань, которая в основном состоит из большого числа плотно расположенных волокон и небольшого количества клеток, а также основного вещества между ними (например, основа кожи).

Оформленную плотную волокнистую соединительную ткань, имеющую строго ориентированные клетки и волокна в соответствии с направлением приложенной к ним механической силы. Основным структурным и функциональным элементом таких тканей являются коллагеновые или эластические волокна правильной ориентации (сухожилия, фиброзные мембраны, пластинчатая волокнистая соединительная ткань и эластическая соединительная ткань).

Сухожилия состоят из пучков коллагеновых волокон, ориентированных вдоль органа. Различают сухожильные пучки первого, второго, третьего порядков и т. д. Сухожильные пучки первого, или низшего, порядка отделены друг от друга небольшими пространствами, заполненными основным веществом, где продольными рядами лежат сухожильные клетки.

Сухожильные пучки первого порядка вместе с продольными рядами сухожильных клеток образуют сухожильные пучки второго порядка. Они отделены друг от друга прослойками рыхлой волокнистой соединительной ткани с сосудами. Прослойки гарантируют обмен веществ и регенерацию элементов, образующих каждый сухожильный пучок второго порядка. Снаружи сухожилие окружено плотной оболочкой - перитендинием. Функционально толщина сухожилия зависит от мощности обслуживаемой мышцы, а морфологически - от количества сухожильных пучков второго порядка.

К фиброзным мембранам относятся фасции, связки, апоневрозы, сухожильные центры диафрагмы и др. Фиброзные мембраны слагаются так же, как и сухожилия, главным образом из коллагеновых пучков и фиброцитов, но расположение пучков в них более сложное и определяется механическими условиями, в которых функционируют эти образования (фасции, связки и т. п.).

Пластинчатая волокнистая соединительная ткань встречается в некоторых небольших органах или частях органов (периневрий нерва, пластинчатые тельца и др.) и состоит либо из тесно прилегающих пластинок (стенки извитого семенного канальца), либо из пластинок, между которыми находятся довольно широкие щелевидные пространства (пластинка колбы соматосенсорного нервного окончания).

Эластическая соединительная ткань - разновидность плотной оформленной соединительной ткани. К ней относятся эластические связки и эластические образования кровеносных сосудов и сердца.

Эластические связки (связки позвоночника, голосовые связки гортани и др.) состоят из тяжа толстых эластических волокон. Каждое из них оплетено тонкой прослойкой рыхлой волокнистой соединительной ткани - основой.

Соединительная ткань с особыми свойствами. К этому подвиду собственной соединительной ткани относятся ретикулярная (сеточка) иммунная, и студенистая соединительная ткани (в пупочном канатике), жировая и пигментная.

Хрящевая ткань

Хрящевая ткань состоит из плотного хрящевого вещества и хрящевых клеток (хондоциты), одиночных или располагающихся группами.

По строению хрящевого основного вещества хрящевой ткани, различают три вида

хряща: гиалиновый, эластический и волокнистый.

Гиалиновый хрящ встречается в передних концах ребер, на суставных поверхностях костей, на всем протяжении воздухоносных путей - носа, гортани, трахеи и бронхов в виде опорных частей их стенки. При этом гиалиновый хрящ образует пластинки различной формы, или продольные бруски (например, в ребрах). Макроскопически - плотное, эластичное, полупрозрачное образование с молочно- белым или синеватым оттенком, не имеет сосудов, покрытое снаружи надхрящницей. Внутренний слой надхрящницы называется хондрогенным. Надхрящница богата сосудами и нервами. Гиалиновый хрящ состоит из хрящевых клеток - хондроцитов и хрящевого основного вещества (коллагеновые волокна, аморфное вещество).

Эластический хрящ встречается в ушной раковине, в стенке наружного слухового прохода и слуховой (евстахиевой) трубы, в гортани и сегментарных бронхах. Отличие заключается в том, что хрящевое основное вещество эластического хряща пронизано сетью эластических волокон, образующих вокруг хрящевых клеток подобие сетчатых капсул.

Волокнистый хрящ в тех местах, где совершается переход волокнистой соединительной ткани (сухожилий, связок и т. п.) в гиалиновый хрящ.

Регенерация хрящевой ткани совершается за счет надхрящницы и путем интуссусцепции, т.е. роста изнутри за счет размножения относительно молодых клеток самой хрящевой ткани и их дифференцировки.

Понятие об органах, системах органов и аппаратах

Орган - относительно самостоятельная часть целостного организма, имеющая определенную форму, строение, положение и выполняющая специфические функции.

Состоит из основной и вспомогательной тканей. Например, кость кроме основной костной ткани имеет соединительную, нервную, хрящевую, так как имеет относительно обособленное кровоснабжение (питание) и иннервацию.

Система органов - совокупность связанных анатомически органов, объединенных общим происхождением и функцией (пищеварительная, нервная, дыхательная система).

Аппараты - совокупность органов, объединенных функционально и имеющих различное происхождение, строение и анатомическое расположение в организме (двигательный аппарат, эндокринный).

наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. У всех растений и животных, за исключением самых примитивных, тело состоит из тканей, причем у высших растений и у высокоорганизованных животных ткани отличаются большим разнообразием структуры и сложностью своих продуктов; сочетаясь друг с другом, разные ткани образуют отдельные органы тела.

Гистология изучает ткани животных; исследование растительных тканей обычно относят к анатомии растений. Гистологию иногда называют микроскопической анатомией, поскольку она изучает строение (морфологию) организма на микроскопическом уровне (объектом гистологического исследования служат очень тонкие тканевые срезы и отдельные клетки). Хотя эта наука прежде всего описательная, в ее задачу также входит интерпретация тех изменений, которые происходят в тканях в норме и патологии. Поэтому гистологу необходимо хорошо разбираться в том, как формируются ткани в процессе эмбрионального развития, какова их способность к росту в постэмбриональный период и каким они подвергаются изменениям в различных естественных и экспериментальных условиях, в том числе в ходе своего старения и гибели составляющих их клеток.

История гистологии как отдельной ветви биологии тесно связана с созданием микроскопа и его совершенствованием. М.Мальпиги (1628-1694) называют «отцом микроскопической анатомии», а следовательно гистологии. Гистология обогащалась наблюдениями и методами исследования, проводившимися или создававшимися многими учеными, основные интересы которых лежали в области зоологии или медицины. Об этом свидетельствует гистологическая терминология, увековечившая их имена в названиях впервые описанных ими структур или созданных методов: островки Лангерганса, либеркюновы железы, купферовы клетки, мальпигиев слой, окраска по Максимову, окраска по Гимза и т.п.

В настоящее время получили распространение методы изготовления препаратов и их микроскопического исследования, дающие возможность изучать отдельные клетки. К таким методам относятся техника замороженных срезов, фазово-контрастная микроскопия, гистохимический анализ, культивирование тканей, электронная микроскопия; последняя позволяет детально изучать клеточные структуры (клеточные мембраны, митохондрии и др.). С помощью сканирующего электронного микроскопа удалось выявить интереснейшую трехмерную конфигурацию свободных поверхностей клеток и тканей, которую невозможно увидеть под обычным микроскопом.

Происхождение тканей . Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь - это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему. См. также ЭМБРИОЛОГИЯ. Основные типы тканей . Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань . Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих. Мышечная ткань . Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть. Соединительная ткань . Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов - костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена - белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира. Кровь . Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы - зернистых (гранулоциты) и незернистых (агранулоциты) - в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов - голубоватый оттенок, гранулы базофилов - пурпурный оттенок, гранулы нейтрофилов - слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие. См. также КРОВЬ. Нервная ткань . Нервная ткань состоит из высоко специализированных клеток - нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты - более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии. Замещение ткани и регенерация . На протяжении всей жизни организма постоянно происходит изнашивание или разрушение отдельных клеток, что составляет один из аспектов нормальных физиологических процессов. Кроме того, иногда, например в результате какой-то травмы, происходит утрата той или иной части тела, состоящей из разных тканей. В таких случаях для организма крайне важно воспроизвести утраченную часть. Однако регенерация возможна только в определенных границах. Некоторые относительно просто организованные животные, например планарии (плоские черви), дождевые черви, ракообразные (крабы, омары), морские звезды и голотурии, могут восстанавливать части тела, утраченные целиком по каким-либо причинам, в том числе в результате самопроизвольного отбрасывания (аутотомии). Чтобы произошла регенерация, недостаточно одного лишь образования новых клеток (пролиферации) в сохранившихся тканях; новообразованные клетки должны быть способны к дифференцировке, чтобы обеспечить замену клеток всех типов, входивших в утраченные структуры. У других животных, особенно у позвоночных, регенерация возможна лишь в некоторых случаях. Тритоны (хвостатые амфибии) способны регенерировать хвост и конечности. Млекопитающие лишены этой способности; однако и у них после частичного экспериментального удаления печени можно наблюдать в определенных условиях восстановление довольно значительного участка печеночной ткани. См. также РЕГЕНЕРАЦИЯ.

Более глубокое понимание механизмов регенерации и дифференцировки несомненно откроет много новых возможностей для использования этих процессов в лечебных целях. Фундаментальные исследования уже внесли большой вклад в развитие методов пересадки кожи и роговицы. В большинстве дифференцированных тканей сохраняются клетки, способные к пролиферации и дифференцировке, но существуют ткани (в частности, центральная нервная система у человека), которые, будучи полностью сформированными, не способны к регенерации. Примерно в годовалом возрасте центральная нервная система человека содержит положенное ей число нервных клеток, и хотя нервные волокна, т.е. цитоплазматические отростки нервных клеток, способны регенерировать, случаи восстановления клеток головного или спинного мозга, разрушенных в результате травмы или дегенеративного заболевания, неизвестны.

Классическими примерами замещения нормальных клеток и тканей в организме человека служит обновление крови и верхнего слоя кожи. Наружный слой кожи - эпидермис - лежит на плотном соединительнотканном слое, т.н. дерме, снабженной мельчайшими кровеносными сосудами, доставляющими ей питательные вещества. Эпидермис состоит из многослойного плоского эпителия. Клетки его верхних слоев постепенно трансформируются, превращаясь в тонкие прозрачные чешуйки - процесс, называемый ороговением; в конце концов эти чешуйки слущиваются. Такое слущивание особенно заметно после сильных солнечных ожогов кожи. У земноводных и пресмыкающихся сбрасывание ороговевшего слоя кожи (линька) происходит регулярно. Ежедневная утрата поверхностных клеток кожи компенсируется за счет новых клеток, поступающих из активно растущего нижнего слоя эпидермиса. Различают четыре слоя эпидермиса: наружный роговой слой, под ним - блестящий слой (в котором начинается ороговение, и его клетки при этом становятся прозрачными), ниже - зернистый слой (в его клетках накапливаются пигментные гранулы, что вызывает потемнение кожи, особенно под действием солнечных лучей) и, наконец, самый глубокий - зачатковый, или базальный, слой (в нем на протяжении всей жизни организма происходят митотические деления, дающие новые клетки для замены слущивающихся).

Клетки крови человека и других позвоночных тоже постоянно обновляются. Каждому типу клеток свойственна более или менее определенная продолжительность жизни, по истечении которой они разрушаются и удаляются из крови другими клетками - фагоцитами («пожирателями клеток»), специально приспособленными для этой цели. Новые кровяные клетки (взамен разрушившихся) образуются в кроветворных органах (у человека и млекопитающих - в костном мозге). Если потеря крови (кровотечение) или разрушение клеток крови под действием химических веществ (гемолитических агентов) наносят клеточным популяциям крови большой ущерб, кроветворные органы начинают продуцировать больше клеток. При потере большого количества эритроцитов, снабжающих ткани кислородом, клеткам тела угрожает кислородное голодание, особенно опасное для нервной ткани. При недостатке лейкоцитов организм теряет способность сопротивляться инфекциям, а также удалять из крови разрушившиеся клетки, что само по себе ведет к дальнейшим осложнениям. В нормальных условиях потеря крови служит достаточным стимулом для мобилизации регенеративных функций кроветворных органов.

Выращивание тканевой культуры требует определенных навыков и оборудования, однако это важнейший метод изучения живых тканей. Кроме того, он позволяет получить дополнительные данные о состоянии тканей, изучавшихся обычными гистологическими методами.

Микроскопические исследования и гистологические методы . Даже самый поверхностный осмотр позволяет отличить одни ткани от других. Мышечную, костную, хрящевую и нервную ткани, а также кровь можно распознать невооруженным глазом. Однако для детального исследования необходимо изучать ткани под микроскопом при большом увеличении, позволяющем увидеть отдельные клетки и характер их распределения. Под микроскопом можно исследовать влажные препараты. Пример такого препарата - мазок крови; для его изготовления наносят каплю крови на предметное стекло и размазывают по нему в виде тонкой пленки. Однако эти методы обычно не позволяют получить полную картину распределения клеток, а также участков, в которых ткани соединяются . Живые ткани, извлеченные из тела, подвергаются быстрым изменениям; между тем любое самое незначительное изменение ткани ведет к искажению картины на гистологическом препарате. Поэтому очень важно сразу же после извлечения ткани из организма обеспечить ее сохранность. Это достигается с помощью фиксаторов - жидкостей различного химического состава, которые очень быстро убивают клетки, не искажая детали их строения и обеспечивая сохранение ткани в этом - фиксированном - состоянии. Состав каждого из многочисленных фиксаторов был разработан в результате многократного экспериментирования, и тем же способом многократных проб и ошибок было установлено нужное соотношение в них разных компонентов.

После фиксации ткань обычно подвергают обезвоживанию. Поскольку быстрый перенос в спирт высокой концентрации привел бы к сморщиванию и деформации клеток, обезвоживание производят постепенно: ткань проводят через ряд сосудов, содержащих спирт в последовательно возрастающей концентрации, вплоть до 100%. После этого ткань обычно переносят в жидкость, хорошо смешивающуюся с жидким парафином; чаще всего для этого используют ксилол или толуол. После кратковременного выдерживания в ксилоле ткань способна поглощать парафин. Пропитывание ведется в термостате, чтобы парафин оставался жидким. Всю эту т.н. проводку производят вручную или же помещают образец в специальный прибор, который проделывает все операции автоматически. Используется и более быстрая проводка с использованием растворителей (например, тетрагидрофурана), способных смешиваться как с водой, так и с парафином.

После того как кусочек ткани полностью пропитался парафином, его помещают в небольшую бумажную или металлическую форму и добавляют в нее жидкий парафин, заливая им весь образец. Когда парафин затвердеет, получается твердый блок с заключенной в нем тканью. Теперь ткань можно нарезать. Обычно для этого используют специальный прибор - микротом. Образцы тканей, взятые во время операции, можно нарезать, предварительно заморозив, т.е. не проводя обезвоживания и заливки в парафин.

Описанную выше процедуру приходится несколько модифицировать, если ткань, например кость, содержит твердые включения. Минеральные компоненты кости необходимо предварительно удалить; для этого ткань после фиксации обрабатывают слабыми кислотами - этот процесс называют декальцинированием. Наличие в блоке кости, не подвергшейся декальцинированию, деформирует всю ткань и повреждает режущий край ножа микротома. Можно, однако, распилив кость на мелкие кусочки и обтачивая их каким-либо абразивом, получить шлифы - чрезвычайно тонкие срезы кости, пригодные для изучения под микроскопом.

Микротом состоит из нескольких частей; главные из них - нож и держатель. Парафиновый блок прикрепляют к держателю, который перемещается относительно края ножа в горизонтальной плоскости, а сам нож при этом остается неподвижным. После того как получен один срез, держатель при помощи микрометрических винтов продвигают вперед на определенное расстояние, соответствующее желаемой толщине среза. Толщина срезов может достигать 20 мкм (0,02 мм) или составлять всего 1-2 мкм (0,001-0,002 мм); она зависит от размеров клеток в данной ткани и обычно колеблется от 7 до 10 мкм. Срезы парафиновых блоков с заключенной в них тканью помещают на предметное стекло. Далее удаляют парафин, помещая стекла со срезами в ксилол. Если нужно сохранить в срезах жировые компоненты, то для заливки ткани вместо парафина используют карбовакс - синтетический полимер, растворимый в воде.

После всех этих процедур препарат готов для окрашивания - очень важного этапа изготовления гистологических препаратов. В зависимости от типа ткани и характера исследования применяют разные методы окрашивания. Эти методы, как и методы заливки ткани, вырабатывались в ходе многолетнних экспериментов; однако постоянно создаются и новые методы, что связано как с развитием новых направлений исследований, так и с появлением новых химических веществ и красителей. Красители служат важным инструментом гистологического исследования в силу того, что они по-разному поглощаются разными тканями или их отдельными компонентами (клеточными ядрами, цитоплазмой, мембранными структурами). В основе окрашивания лежит химическое сродство между сложными веществами, входящими в состав красителей, и определенными компонентами клеток и тканей. Красители применяют в виде водных или спиртовых растворов, в зависимости от их растворимости и выбранного метода. После окрашивания препараты промывают в воде или спирте, чтобы удалить избыток красителя; после этого окрашенными остаются только те структуры, которые поглощают данный краситель.

Чтобы препарат сохранялся в течение достаточно долгого времени, окрашенный срез накрывают покровным стеклом, смазанным каким-нибудь клейким веществом, которое постепенно затвердевает. Для этого используют канадский бальзам (природная смола) и различные синтетические среды. Приготовленные таким образом препараты можно хранить годами. Для изучения тканей в электронном микроскопе, позволяющем выявить ультраструктуру клеток и их компонентов, применяют другие методы фиксации (обычно с использованием осмиевой кислоты и глутаральдегида) и другие среды для заливки (обычно эпоксидные смолы). Специальный ультрамикротом со стеклянным или алмазным ножом позволяет получать срезы толщиной менее 1 мкм, а постоянные препараты монтируют не на предметных стеклах, а на медных сеточках. Недавно были созданы методы, позволяющие применять ряд обычных гистологических процедур окрашивания после того, как ткань была подвергнута фиксации и заливке для электронной микроскопии.

Для описанного здесь трудоемкого процесса необходим квалифицированный персонал, однако при массовом производстве микроскопических препаратов используют конвейерную технологию, при которой многие этапы обезвоживания, заливки и даже окрашивания производятся автоматическими приборами для проводки тканей. В тех случаях, когда необходимо срочно поставить диагноз, в частности во время хирургической операции, ткани, полученные при биопсии, быстро фиксируют и замораживают. Срезы таких тканей изготавливают за несколько минут, не заливают и сразу окрашивают. Опытный патоморфолог может по общему характеру распределения клеток сразу поставить диагноз. Однако для детального исследования такие срезы непригодны.

Гистохимия . Некоторые методы окрашивания позволяют выявлять в клетках те или иные химические вещества. Возможно дифференциальное окрашивание жиров, гликогена, нуклеиновых кислот, нуклеопротеинов, определенных ферментов и других химических компонентов клетки. Известны красители, интенсивно окрашивающие ткани с высокой метаболической активностью. Вклад гистохимии в изучение химического состава тканей постоянно возрастает. Подобраны красители, флуорохромы и ферменты, которые можно присоединить к специфическим иммуноглобулинам (антителам) и, наблюдая связывание этого комплекса в клетке, идентифицировать клеточные структуры. Эта область исследований составляет предмет иммуногистохимии. Использование иммунологических маркеров в световой и электронной микроскопии способствует быстрому расширению наших знаний о биологии клетки, а также повышению точности медицинских диагнозов. «Оптическое окрашивание » . Традиционные гистологические методы окрашивания сопряжены с фиксацией, которая убивает ткани. Методы оптического окрашивания основаны на том, что клетки и ткани, различающиеся по толщине и химическому составу, обладают и разными оптическими свойствами. В результате, используя поляризованный свет, дисперсию, интерференцию или фазовый контраст, удается получать изображения, на которых отдельные детали строения хорошо видны благодаря различиям в яркости и (или) окраске, тогда как в обычном световом микроскопе такие детали малоразличимы. Эти методы позволяют изучать как живые, так и фиксированные ткани и исключают появление артефактов, возможных при использовании обычных гистологических методов. См. также АНАТОМИЯ РАСТЕНИЙ. ЛИТЕРАТУРА Хэм А., Кормак Д. Гистология , тт. 1-5. М., 1982-1983