Какой звук человек слышит лучше всего. Смотреть что такое "Слух" в других словарях. Диапазон слуха человека в нормальных условиях

Тематики аудио стоит рассказать о человеческом слухе несколько подробнее. Насколько субъективно наше восприятие? Можно ли протестировать свой слух? Сегодня вы узнаете самый простой способ выяснить, полностью ли ваш слух соответствует табличным значениям.

Известно, что среднестатистический человек способен воспринимать органами слуха акустические волны в диапазоне от 16 до 20 000 Гц (в зависимости от источника - 16 000 Гц). Этот диапазон и называется слышимым диапазоном.

20 Гц Гул, который только ощущается, но не слышится. Воспроизводится преимущественно топовыми аудиосистемами, так что в случае тишины виновата именно она
30 Гц Если не слышно, вероятнее всего, снова проблемы воспроизведения
40 Гц В бюджетных и среднеценовых колонках будет слышно. Но очень тихо
50 Гц Гул электрического тока. Должно быть слышно
60 Гц Слышимая (как и все до 100 Гц, скорее осязаемая за счёт переотражения от слухового канала) даже через самые дешёвые наушники и колонки
100 Гц Конец нижних частот. Начало диапазона прямой слышимости
200 Гц Средние частоты
500 Гц
1 кГц
2 кГц
5 кГц Начало диапазона высоких частот
10 кГц Если эта частота не слышна, вероятны серьёзные проблемы со слухом. Необходима консультация врача
12 кГц Неспособность слышать эту частоту может говорить о начальной стадии тугоухости
15 кГц Звук, который не способна слышать часть людей после 60 лет
16 кГц В отличие от предыдущей, эту частоту не слышат почти все люди после 60 лет
17 кГц Частота является проблемной для многих уже в среднем возрасте
18 кГц Проблемы со слышимостью этой частоты - начало возрастных изменений слуха. Теперь ты взрослый. :)
19 кГц Предельная частота среднестатистического слуха
20 кГц Эту частоту слышат только дети. Правда

»
Этого теста достаточно для приблизительной оценки, но если вы не слышите звуки выше 15 кГц, то стоит обратиться к врачу.

Обратите внимание, что проблема слышимости низких частот, скорее всего, связана с .

Чаще всего надпись на коробке в стиле «Воспроизводимый диапазон: 1–25 000 Гц» - это даже не маркетинг, а откровенная ложь со стороны производителя.

К сожалению, компании обязаны сертифицировать не все аудиосистемы, поэтому доказать, что это враньё, практически невозможно. Колонки или наушники, может быть, и воспроизводят граничные частоты… Вопрос в том, как и на какой громкости.

Проблемы со спектром выше 15 кГц - вполне обычное возрастное явление, с которым пользователи, скорее всего, столкнутся. А вот 20 кГц (те самые, за которые так борются аудиофилы) обычно слышат только дети до 8–10 лет.

Достаточно последовательно прослушать все файлы. Для более подробного исследования можно воспроизводить семплы, начиная с минимальной громкости, постепенно увеличивая её. Это позволит получить более корректный результат в том случае, если слух уже немного испорчен (напомним, что для восприятия некоторых частот необходимо превышение определённого порогового значения, которое как бы открывает, помогает слуховому аппарату слышать её).

А вы слышите весь частотный диапазон, который способен ?

Познакомившись с физической природой звука, посмотрим теперь, каким путём он воспринимается.

Для улавливания звука у человека и животных есть специальный орган - ухо. Это - необычайно тонкий аппарат. Мы не знаем другого такого механизма, который отзывался бы с такой поразительной точностью на ничтожно малые изменения давления в воздухе. Ухо преобразует колебательное движение звуковой волны в определённое ощущение, которое и воспринимается нашим сознанием как звук.

С давних пор человека интересует устройство и работа этого удивительного органа. Однако и по настоящее время далеко ещё не всё в этой области выяснено. Строение человеческого уха показано на рисунке 9. Орган слуха делится на три части: наружное, среднее и внутреннее ухо (см. рис. 9).

Рис. 9. Схема устройства человеческого уха


Наружное ухо, или ушная раковина, у разных животных бывает самой различной формы и величины. У большинства из них ушная раковина подвижна. У человека это свойство почти полностью потеряно. Встречаются, правда, люди, способные двигать ушами, но это - редкое исключение, напоминающее об общности всего живого на земле.

От ушной раковины идёт слуховой проход, заканчивающийся барабанной перепонкой. Она служит границей между наружным и средним ухом. Перепонка имеет овальную форму и немного вытянута внутрь. Площадь её - около 0,65 квадратного сантиметра.

Для свободного колебания барабанной перепонки необходимо, чтобы давление воздуха с обеих сторон её было одинаковым. Тогда при малейших изменениях давления наружного воздуха перепонка, не встречая противодействия с другой стороны, легко приходит в колебательное движение.

Вероятно, каждый замечал, что после сильного сморкания мы некоторое время перестаём слышать слабые звуки. Это происходит потому, что в среднее ухо через так называемую евстахиеву трубу попадает из носоглотки воздух (Бартоломео Евстахий - итальянский врач, живший в XIV веке - первый дал описание этой трубы). Конец трубы при этом часто закупоривается слизью, и тогда воздух изнутри давит на барабанную перепонку, и она теряет прежнюю свободу колебаний. Но достаточно, однако, проглотить слюну, чтобы евстахиева труба открылась, излишек воздуха вышел (в ухе при этом ощущается лёгкий треск) и давление с обеих сторон перепонки выравнялось. Нормальный слух вновь восстанавливается. Если почему-либо внезапно изменяется давление окружающего воздуха, то мы слышим в ушах шум, который прекращается опять-таки при глотании слюны.

В среднем ухе находится ряд особых косточек: молоточек, наковальня и стремя. Свои названия эти косточки получили благодаря внешнему сходству с соответствующими предметами. Они очень малы по размерам и все вместе весят около 0,05 грамма. Расположены эти косточки так, что образуют рычаг, который одновременно передаёт колебания барабанной перепонки во внутреннее ухо и преобразует эти колебания в колебания с меньшим размахом, но большим давлением. Молоточек, наковальня и стремя передают всю энергию колебания барабанной перепонки на очень маленькое овальное окно внутреннего уха; таким образом внутреннее ухо получает давление раз в 50–60 больше того, которое испытывает барабанная перепонка.

Устройство внутреннего уха весьма сложно. Основное назначение этого уха - воспринимать только те колебания, которые посылает барабанная перепонка. Никакие другие сотрясения на него не должны действовать. Поэтому оно окружено очень крепкими костями. Во внутреннем ухе есть три полукружных канала (см. рис. 9), не имеющих никакого отношения к слуху. Это - органы равновесия. Головокружение, которое мы испытываем, если станем быстро вертеться, происходит из-за движения жидкости, наполняющей эти каналы. Орган же слухового восприятия заключён в особую оболочку. Взгляните на правую часть рисунка. Что она вам напоминает? Каждый тотчас же ответит, что она похожа на улитку. Улиткой она и называется. Улитка имеет приблизительно 2 3 / 4 оборота. Вдоль всей длины она разделена перегородкой и наполнена особой студенистой жидкостью. Внутри улитки находится перепонка - основная мембрана. На ней расположены разветвления слухового нерва - 23,5 тысячи мельчайших проводников слухового раздражения, идущих затем по нервному стволу к коре головного мозга.

Процессы, происходящие во внутреннем ухе, очень сложны, и некоторые из них до сих пор точно не изучены.

2. Арифметика звуков

Звуковые волны, проникая в слуховой канал, приводят в колебание барабанную перепонку. Через цепь косточек среднего уха колебательное движение перепонки передаётся жидкости улитки. Волнообразное движение этой жидкости, в свою очередь, передаётся основной мембране. Движение последней влечёт за собой раздражение окончаний слухового нерва. Таков главный путь звука от его источника до нашего сознания.

Однако этот путь не единственный. Звуковые колебания могут передаваться и прямо во внутреннее ухо, минуя наружное и среднее. Каким же путём? Костями самого черепа! Они являются хорошими проводниками звука. Если камертон поднести к темени или к лежащему сзади уха сосцевидному отростку, или к зубам, то можно отчётливо слышать звук, хотя по воздуху слышимых колебаний не доносится. Это происходит потому, что кости черепа, получив колебания от камертона, передают их прямо внутреннему уху, в котором возникают те же самые процессы раздражения слуховых нервов, как и от колебаний, переданных барабанной перепонкой. Вот почему иногда «слушают» работу отдельных частей машины, взяв один конец палки в зубы (см. страницу 14).

Любопытно заметить также, что иногда люди, у которых оперативно удалены барабанная перепонка и косточки среднего уха, способны слышать - хотя и со значительным ослаблением. И в этом случае, по-видимому, колебания звуковой волны передаются непосредственно внутреннему уху.

Если колебания барабанной перепонки медленные - число их меньше шестнадцати в одну секунду, - то основная мембрана колебаний не получит. Поэтому-то мы не слышим звука, когда тело колеблется с частотой меньше шестнадцати.

Колебания с частотой больше двадцати тысяч, как мы уже говорили, также не воспринимаются нашим слуховым аппаратом как звук.

Но не все люди, даже с нормальным слухом, одинаково чувствительны к звукам различной частоты. Так, дети обычно без напряжения воспринимают звуки с частотой до 22 тысяч. У большинства взрослых чувствительность уха к высоким звукам уже понижена до 16–18 тысяч колебаний в секунду. Чувствительность же уха у стариков ограничена звуками с частотой в 10–12 тысяч. Они часто совершенно не слышат комариного пения, стрекотания кузнечика, сверчка и даже чириканья воробья.

Многие животные особенно восприимчивы к высоким звукам. Собака, например, улавливает колебания с частотой до 38 000, то есть звуки, для человека не слышимые.

А как наше ухо умеет оценивать громкость звуков одной и той же высоты? Оказывается, наши способности в этом отношении почти равны математическому развитию ребёнка или первобытного человека. Как ребёнок может сосчитать только до двух, а если предметов больше, то он скажет, что их много, так и мы умеем оценивать изменение громкости звука лишь в 2–3 раза, а дальше ограничиваемся неопределённым: «много громче» или «значительно тише».

Но если нашему сознанию доступно ещё некоторое суждение об изменении громкости, то сложение и вычитание одной громкости из другой для него совершенно неразрешимая задача. Однако не следует думать, что человек вообще не может отличать звуки, близкие по своей громкости. Музыканты, например, пользуются целой шкалой громкости. По этой шкале каждая последующая громкость вдвое больше предыдущей, а вся шкала имеет семь ступеней громкости.

Несмотря на то, что наш слуховой аппарат улавливает чрезвычайно малые изменения давления воздуха, мы всё же не в состоянии слышать очень слабые звуки. Но не нужно сожалеть об этом. Представьте себе, что получилось бы, если бы наше ухо оказалось более чувствительным, чем оно есть. Ведь воздух состоит из отдельных молекул, беспрерывно движущихся по всем направлениям. Благодаря такому движению в отдельных местах может создаться на мгновение увеличение или уменьшение давления. По величине эти изменения давления как раз очень близки к изменениям давления, возникающим в местах сгущения и разрежения самой слабой звуковой волны. И если бы ухо воспринимало такие малейшие изменения в давлении, то эти случайные колебания воздуха создавали бы ощущение постоянного шума, и мы не были бы знакомы с тишиной! Природа как бы вовремя остановилась на определённом пороге чувствительности нашего слухового аппарата, оставив ему возможность отдыхать.

В обычной жизни нас никогда не окружает совершенная тишина, и ухо по существу не имеет полного отдыха. Но мы часто создаём себе искусственную тишину - отодвигаем на время от своего сознания получаемые звуковые восприятия. Мы как бы пропускаем некоторые звуки «мимо ушей». Однако если мы и «не слышим» их, ухо всё равно эти звуки отмечает. Точно так же, когда к звукам, которые мы «пропускаем мимо ушей», прибавляется звук, имеющий для нас какой-нибудь интерес, мы тотчас же его улавливаем, даже если он и тише остальных звуков. Мать часто может спать при большом шуме, но она сразу просыпается от первого крика ребёнка. Пассажир может спокойно спать во время хода поезда, но при его остановке просыпается.

3. Сколько звуков слышит человек?

Не все люди с нормальным слухом одинаково слышат. Одни способны различать близкие по высоте и громкости звуки и улавливать в музыке или шуме отдельные тона. Другие же этого сделать не могут. Для человека с тонким слухом существует больше звуков, чем для человека с неразвитым слухом.

Но насколько вообще должна отличаться частота двух звуков, чтобы их можно было слышать как два разных тона? Можно ли, например, отличить друг от друга тона, если разница в частотах равна одному колебанию в секунду? Оказывается, что для некоторых тонов это возможно, а для других нет. Так, тон с частотой 435 можно отличить по высоте от тонов с частотами 434 и 436. Но если брать более высокие тона, то отличие сказывается уже при большей разности частот. Тона с числом колебаний 1000 и 1001 ухо воспринимает как одинаковые и улавливает разницу в звучании только между частотами 1000 и 1003. Для более высоких тонов эта разность в частотах ещё больше. Например, для частот около 3000 она равна 9 колебаниям.

Точно так же не одинакова наша способность отличать звуки, близкие по громкости. При частоте 32 можно расслышать только 3 звука разной громкости; при частоте 125 - уже 94 звука различной громкости, при 1000 колебаний - 374, при 8000 - снова меньше и, наконец, при частоте 16 000 мы слышим только 16 звуков. Всего же звуков, различных по высоте и громкости, наше ухо может уловить более полумиллиона! Это только полмиллиона простых звуков. Прибавьте к этому бесчисленные сочетания из двух и более тонов - созвучия, и вы получите впечатление о многообразии того звукового мира, в котором мы живём и в котором наше ухо так свободно ориентируется. Вот почему ухо считается, наряду с глазом, самым чувствительным органом чувства.

4. Могут ли слышать глухие?

Ухо, как и всякий другой орган, подвержено различным заболеваниям. В зависимости от рода заболевания слух может быть ослаблен или потерян полностью. Иногда люди слышат звуки только определённой высоты. Есть болезни, при которых перепонки уха теряют гибкость и делаются мало подвижными; тогда человек перестаёт слышать звуки низкого тона. Наоборот, в начальный период заболевания внутреннего уха чаще всего теряется способность воспринимать высокие тона. А может быть и так, что человек слышит звуки одной высоты и не слышит звуков другой высоты. Это бывает при болезни слухового нерва.

Человек считается слегка глуховатым, если для него требуется тысячекратное увеличение давления звуковой волны в сравнении с давлением, необходимым нормальному уху. Когда давление требуется в десять тысяч раз большее, то человек относится к разряду «тугоухих», он с трудом слышит разговор. Если же для восприятия звука необходимо увеличение давления в сто тысяч раз, то такое ухо нуждается уже в специальных усиливающих звук приборах.

Человек является совершенно глухим, когда его ухо требует больше, чем в миллион раз увеличенного давления. Нормальное ухо при таком давлении звуковой волны ощущает уже не звук, а боль.

Ослабленный, а тем более полностью потерянный слух - тяжёлый недуг, и учёные давно работают над тем, чтобы облегчить страдания людей с недостатками слуха.

В тех случаях, когда нельзя путём лечения возвратить слух, пытаются достичь этого путём усиления звуковой волны. С этой целью применяются усиливающие приборы-протезы. Раньше ограничивались употреблением специальных рупоров, воронок, рогов и разговорных трубок. Теперь нередко применяются электрические усилители. Часто эти приборы бывают настолько малых размеров, что они помещаются в самом ухе, перед барабанной перепонкой.

В последнее время делаются попытки «научить» слышать совершенно глухих. Многим из вас, вероятно, приходилось испытывать ощущение боли в ушах при очень сильных звуках. Такие звуки могут быть осязаемы поверхностью кожи, например выставленными против волны пальцами. Ведь и наше ухо можно рассматривать как своего рода орган осязания, очень тонко построенный. Спрашивается, нельзя ли у глухих работу уха поручить органу осязания? Недавно были проведены подобные исследования. Обыкновенные звуки принимались микрофоном, усиливались и передавались в виде колебаний мембранам специальных телефонов. Прикасаясь к этим мембранам пальцами, глухие воспринимают осязанием частоту и силу колебания, т. е. другими словами, то, что определяет высоту и громкость звука.

После соответствующего обучения глухие начинают понимать не только отдельные звуки, но и речь!

Если вы слышите какие-то звуки, которых не слышат другие люди, это вовсе не значит, что у вас слуховые галлюцинации и пора к психиатру. Возможно, вы относитесь к категории так называемых хамеров. Термин происходит от английского слова hum, означающего гул, гудение, жужжание.

Странные жалобы

Впервые на феномен обратили внимание в 50-х годах прошлого столетия: люди, проживающие в разных концах планеты, жаловались на то, что постоянно слышат некий равномерный гудящий звук. Чаще всего об этом рассказывали жители сельской местности. Они утверждали, что непонятный звук усиливается в ночное время (видимо, потому, что в это время снижается общий звуковой фон). У тех, кто слышал его, нередко наблюдались и побочные эффекты – головная боль, тошнота, головокружение, носовые кровотечения и бессонница.

В 1970 году на загадочный шум пожаловались сразу 800 британцев. Подобные эпизоды происходили также в Нью-Мексико и Сиднее.

В 2003 году специалист по акустике Джефф Левенталь обнаружил, что странные звуки способны слышать лишь 2% всех жителей Земли. Преимущественно это люди в возрасте от 55 до 70 лет. В одном случае хамер даже покончил жизнь самоубийством, так как не мог выносить непрекращающийся гул.

«Это своего рода пытка, иногда просто хочется закричать, - так описывала свои ощущения Кэти Жак из Лидса (Великобритания). - Трудно уснуть, потому что я слышу этот пульсирующий звук непрерывно. Начинаешь ворочаться и еще больше думаешь об этом».

Откуда шум?

Отыскать источник шума исследователи пытались давно. В начале 1990-х сотрудники Лос-Аламосской национальной лаборатории университета Нью-Мексико пришли к выводу, что хамеры слышат звуки, которые сопровождают движение транспорта и производственные процессы на заводах. Но эта версия спорна: ведь, как уже говорилось выше, большинство хамеров проживают в сельской местности.

По другой версии, никакого гула на самом деле нет: это иллюзия, порожденная больным мозгом. И наконец самая интересная гипотеза гласит, что у некоторых людей повышенная чувствительность к низкочастотным электромагнитным излучениям или сейсмической активности. То есть они слышат «гул Земли», на который большинство людей внимания не обращают.

Парадоксы слуха

Дело в том, что среднестатистический человек способен воспринимать звуки в диапазоне от 16 герц до 20 килогерц, если звуковые колебания передаются по воздуху. При передаче звука по костям черепа диапазон возрастает до 220 килогерц.

Например, колебания человеческого голоса могут варьироваться в пределах 300-4000 герц. Звуки выше 20 000 герц мы слышим уже хуже. А колебания ниже 60 герц воспринимаются нами как вибрации. Высокие частоты называются ультразвуком, низкие – инфразвуком.

Не все люди одинаково реагируют на различные звуковые частоты. Это зависит от множества индивидуальных факторов: возраста, пола, наследственности, наличия слуховых патологий и проч. Так, известно, что есть люди, способные воспринимать звуки высокой частоты - до 22 килогерц и выше. В то же время животные порой могут слышать акустические колебания в диапазоне, недоступном человеку: летучие мыши используют ультразвук для эхолокации во время полетов, а киты и слоны предположительно общаются между собой при помощи инфразвуковых колебаний.

В начале 2011 года израильские ученые выяснили, что в человеческом мозге имеются особые группы нейронов, которые позволяют оценить высоту звука вплоть до 0,1 тона. У большинства видов животных, за исключением летучих мышей, таких «приспособлений» не имеется. С возрастом из-за изменений во внутреннем ухе люди начинают хуже воспринимать высокие частоты и развивается нейросенсорная тугоухость.

Но, видимо, не все так просто с нашим мозгом, раз кто-то с годами перестает слышать даже обычные звуки, а кто-то, напротив, начинает слышать то, что недоступно слуху окружающих.

Чем же можно помочь хамерам, ведь они так страдают от своего «дара»? Ряд специалистов считают, что излечить их могла бы так называемая когнитивно-поведенческая терапия. Но сработать она может лишь в том случае, если проблема связана исключительно с психическим состоянием человека.

Джефф Левенталь отмечает, что на сегодняшний день феномен хамеров является одной из тайн, разгадка которых пока не найдена.

Интернет снова разделился на два лагеря, чего не бывало со времен знаменитого «платья раздора», цвет которого люди воспринимали по-разному. Теперь пользователей занимает новая загадка, в основе которой лежит аудиофрагмент.

Впервые о новом феномене заговорили на форуме Reddit 13 апреля. К публикации автора было приложено видео, на котором роботизированный голос произносит имя. Вот только пользователи никак не могут сойтись во мнении, какое именно — дело в том, что половина форума слышит Yanny («Йенни»), а вторая — Laurel («Лорел»).

Самый популярный комментарий к этой записи называет видео «черной магией». Мистики этой ситуации добавляет не только тот факт, что «Йенни» и «Лорел» в принципе звучат по-разному, но и то, что один и тот же человек может услышать два разных имени, если послушает запись несколько раз.

Некоторые пользователи искренне не могут понять, как такое возможно, и не верят тем, кто слышит иное имя. Разумеется, к разгадке феномена уже подключились несколько ученых из разных научных сфер, которые пока не могут сойтись во мнении.

Одной из самых популярных версий является та, которая связана с частотой звука. Доцент Маастрихтского университета Ларс Рики рассказал порталу The Verge, что «Йенни» звучит на более высоких частотах, а «Лорел» — на низких. В результате люди, которые более чутко воспринимают звуки высокой частоты, слышат «Йенни», а остальные — «Лорел».

Такая же ситуация наблюдается с теми, кто слушает запись на разных устройствах или в разных наушников — из-за частоты восприятие одного и того же человека может кардинально измениться.

Кроме того, некоторые пользователи считают, что все дело в скорости воспроизведения — загадочную запись поместили в видеоредактор и проиграли в разном темпе. Таким образом, большинство пользователей в начале видео слышат «Йенни», а ближе к концу — «Лорел». К сожалению, тут тоже не все однозначно — редакция «Газеты.Ru» провела эксперимент и выяснила, что люди начинают слышать имя «Лорел» на разных скоростях, а некоторые не слышат его вообще.

Есть и другая версия. Группа ученых полагает, что из-за плохого качества записи слуховой аппарат разных людей воспринимает аудио двусмысленно — мозгу не хватает информации и он самостоятельно «додумывает» недостающие звуки.

Также сообщается, что люди более старшего возраста слышат только один вариант (как правило, «Йенни»), так как со временем слух ухудшается и уже не может трактовать звуки неоднозначно.

Наконец, еще одно обстоятельство — это ожидание самого слушателя. Автор текста несколько раз слышал и «Йенни», и «Лорел», если накануне прослушивания сосредоточиться только на одном возможном варианте.

Какого цвета платье

Новая звуковая иллюзия является продолжателем дела «платья раздора», которое рассорило весь интернет в феврале 2015 года. Тогда люди не могли определиться, какого цвета платье, изображенное на фотографии — сине-черное или же бело-золотое.

wired.com

К обсуждению подключились обычные пользователи, ученые и даже знаменитости. Как выяснилось впоследствии, всему виной биологические особенности организма человека — люди по-разному воспринимают свет на фотографии. Те, которые видят сине-черное платье, предполагают, что черный цвет под воздействием яркого цвета кажется коричневатым или даже золотистым.

Другая «команда», которая утверждает, что платье на самом деле белое, подразумевает, что оно находится в тени, так как источник света расположен позади него. В таком случае чистый белый цвет начинает отдавать синевой и поэтому выглядит голубоватым.

Спустя два года появились и «кроссовки раздора», которые снова заставили людей ссориться из-за разного цветовосприятия. Британка опубликовала фото обуви, которая ей казалась розово-белой. Ее подруга, напротив, утверждала, что кроссовки серые с бирюзовыми вставками. Девушка выложила снимок в Facebook, чтобы узнать мнение своих друзей, что опять раскололо интернет на два лагеря.

При передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву­ковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном ; более высокие частоты называются ультразвуком , а более низкие - инфразвуком .

Физиология слуха

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста , пола , подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц , а возможно - и выше.

Некоторые животные могут слышать звуки, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации . Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.

Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн .

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст (англ.)

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

- Ребер, Артур С., Ребер (Робертс), Эмили С. The Penguin Dictionary of Psychology. - 3rd Edition. - Лондон : Penguin Books Ltd, . - 880 с. - ISBN 0-14-051451-1 , ISBN 978-0-14-051451-3

В начале 2011 г. в отдельных СМИ, связанных с научной тематикой, прошло краткое сообщение о совместной работе двух израильских институтов. В человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука, вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы. (Внимание! Данная информация требует уточнения!)

Психофизиология слуха

Проецирование наружу слуховых ощущений

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию, объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в разы и даже десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин , он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).
  • Разница в спектре: складки ушной раковины , голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи .

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Исследование слуха

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр ».

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Норма

Восприятие частотного диапазона 16 Гц − 22 кГц с возрастом изменяется - высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и с развитием с возрастом нейросенсорной тугоухости.

Порог слышимости

Порог слышимости - минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах . За нулевой уровень принято звуковое давление 2·10 −5 Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения

Порог болевого ощущения слуховой - величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Патология

См. также

  • Слуховая галлюцинация
  • Слуховой нерв

Литература

Физический энциклопедический словарь/Гл. ред. А. М. Прохоров. Ред. коллегия Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. энцикл., 1983. - 928 с., стр. 579

Ссылки

  • Видеолекция Слуховое восприятие

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Слух" в других словарях:

    слух - слух, а … Русский орфографический словарь

    слух - слух/ … Морфемно-орфографический словарь

    Сущ., м., употр. часто Морфология: (нет) чего? слуха и слуху, чему? слуху, (вижу) что? слух, чем? слухом, о чём? о слухе; мн. что? слухи, (нет) чего? слухов, чему? слухам, (вижу) что? слухи, чем? слухами, о чём? о слухах восприятие органами… … Толковый словарь Дмитриева

    Муж. одно из пяти чувств, коим распознаются звуки; орудие его ухо. Слух тупой, тонкий. У глухих и безухих животных слух заменяется чувством сотрясения. Идти на слух, искать по слуху. | Музыкальное ухо, внутренее чувство, постигающее взаимный… … Толковый словарь Даля

    Слуха, м. 1. только ед. Одно из пяти внешних чувств, дающее возможность воспринимать звуки, способность слышать. Ухо – орган слуха. Острый слух. «До слуха его долетел хриплый крик.» Тургенев. «Желаю славы я, чтоб именем моим твой слух был поражен … Толковый словарь Ушакова