Как видят мир насекомые? Как видят мухи человека? Интересные факты о зрении насекомых. Органы чувств у насекомых


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



Если рассматривать глаз насекомого под сильным увеличительным стеклом, то мы увидим, что состоит он из мельчайшей круглой решетки. А кажется это по той причине, что глаз насекомого состоит из множества маленьких глазков, на научном языке называемых «фасетками». Сегодня пробуем понять, почему у насекомых глаза круглые, как видят насекомые окружающие их предметы? Эти так часто интересуют ребенка, но ?

Особенности строения органов зрения

Глаза насекомых разделяют на три вида:

  1. сложные (фасеточные);
  2. простые;
  3. личиночные.

Строение таких глаз отличается, и видеть ими насекомые способны неодинаково.

Сложное строение глаз преобладает у максимального количества насекомых, зависит от развития самого живого существа. Такие глаза состоят из множественных отдельных структурных элементов – омматидиев.

Через них проводится, преломляется свет, воспринимаются зрительные сигналы. Каждый отдельный омматидий отличается наличием аппарата пигментного изолирования, который целиком или частично предохраняет от попадания бокового света.

Омматидии разделяют на два основных вида, что влияет на особенности строения глаз.

  1. Аппазиционный глаз имеет изолированные омматидии. Каждый из них способен работать индивидуально от остальных, видя только определенную часть окружающего пространства. Картинка складывается в мозгу насекомого, словно мельчайшая мозаика.
  2. Во второй группе – суперпозиционной, омматидии, правда частично, но имеют защищенность от боковых лучей. Это несколько мешает насекомым видеть при интенсивности света, но улучшает зрение в сумерках.

К простым глазам относятся органы зрения, которые имеются у некоторых насекомых и располагаются, как правило, на верхней части головы.

Строение таких глаз существенно упрощено, видят они слабее остальных. Есть мнение, что такие глаза полностью лишены зрительной возможности, и только несут ответственность за улучшение функций сложных глаз.

И если закрасить насекомому фасеточные , оно не сможет ориентироваться в пространстве, даже имея хорошо выраженные глазки простого строения.

Личиночными глазами называют органы зрения, которые имеют личинки насекомых, обладающие возможностью полностью превращаться в сложные глаза. Структура их несколько упрощена, что не позволяет насекомому хорошо видеть.

Отличительные особенности зрения насекомых

Зрение насекомых изучается давно. Благодаря повышенному интересу ученых специалистов, удалось выяснить массу отличительных особенностей, связанных с работоспособностью глаз.

И все равно, строение зрительных органов настолько различно, что качество восприятия изображения, цветность, объемы, движение у разных групп насекомых отличается. На это влияют некоторые факторы:

  • сложный глаз отличается структурным строением омматидиев и численностью, выпуклостью, расположением и формами;
  • простые глаза и стеммы отличаются числом и тонкостью строения, имея огромное количество вариантов.

Глаза насекомых с разной численностью омматидиев:

  • у муравья имеется 6000 фасеток
  • у мухи 4000
  • у жуков 9000
  • у бабочек 17000
  • и самый сложный глаз у стрекозы имеет 28000- 30000 фасеток.

Насекомые видят по-разному: доступный для зрения лучевой спектр понижен с левой стороны, и увеличен с правой.

У стрекозы только нижние фасетки различают цвета, верхние различают форму. Глаза стрекозы занимают большую часть головы, поэтому стрекоза способна видеть — чувствовать, то что происходит у нее за спиной. Стрекоза не видит объект, а чувствует его тепло, видит в инфракрасном диапазоне.

Насекомые умеют отличать формы, но происходит это не так, как у человека. Бабочки и пчелы игнорируют круг или овал, но привлекутся радиальным строением, напоминающим цветочный венчик. Предмет, отличающийся сложностью фигуры и игры теней, привлечет внимание гораздо оперативней. Интересно и то, что пчелам нравятся предметы, отличающиеся малыми размерами.
Примечательно, что насекомые способны «узнавать» предметы даже по расположению.

Функции хордотональных органов, по-видимому, различны. В тех случаях, когда сенсиллы примыкают к кутикуле, они, как правило, служат для восприятия низкочастотных вибраций. Правда, в отдельных случаях (хордотональные органы, расположенные в антеннах комаров) они чувствительны и к колебаниям высокой частоты. Внутренние хордотональные органы, вероятно, регистрируют изменения давления и механических напряжений, возникающих в теле насекомого.

Настоящими слуховыми органами насекомых являются тимпанальные органы, в которых сколпофоры связаны с тонкими кутикулярными мембранами (тимпанальными мембранами), играющими роль барабанных перепонок.

Типичным строением обладают тимпанальные органы кузнечиков, расположенные на голенях передних ног. В верхней части голени имеются по две узкие продольные щели, ведущие в два барабанных кармана. Внутренние стенки кармашков, обращенные друг к другу, тонки и представляют собой барабанные перепонки, наружные же утолщены и называются барабанными крышечками. Между обеими барабанными перепонками, вплотную примыкая к ним, проходят два трахейных ствола, которые, быть может, служат в качестве резонаторов. Наконец, главную часть тимпанального органа составляют три группы сколпофоров. Сколпофоры примыкают частью к барабанной перепонке, частью к резонирующей трахее. Центральные отростки чувствительных клеток образуют тимпанальный нерв. Точно по такому же принципу - сочетание сколпофоров и тимпанальных перепонок - устроены тимпанальные органы и других насекомых - саранчовых, сверчков, бабочек и др. Правда, располагаться они могут в разных местах тела - на передних сегментах брюшка, у основания крыльев и т. п.

Хордотональные сенсиллы тимпанальных органов служат для восприятия колебаний различной частоты - имеются "высокочастотные" и "низкочастотные" сенсиллы. Как правило, одна из таких групп настроена на частоты, максимально представленные в звуках, издаваемых особями того же вида. В целом насекомые воспринимают звуки в очень широком диапазоне: от инфразвука (8-10 Гц) до ультразвука (45000 Гц).

Насекомые способны не только воспринимать, но и издавать звуки. Эта особенность характерна для представителей многих групп: прямокрылых , жуков , перепончатокрылых , бабочек и др. Звуковые органы насекомых очень разнообразны.


Стрекотание прямокрылых, например, вызывается развитием известных стрекочущих приспособлений, которые чаще всего связаны с крыльями. Так, у кузнечиковых эти органы находятся на передних крыльях. Некоторые жилки левого крыла становятся зазубренными и превращаются в так называемый смычок, которым животное водит по правому крылу, где в соответствующем месте находится резонатор. Последний состоит из ограниченной высокой жилкой площадки на крыле - зеркальца. Движение зазубренного смычка по краю зеркальца приводит к вибрации растянутой на нем части поверхности крыла.

У саранчовых смычок образован рядом мельчайших зубчиков на бедрах задних ног. При трении бедер о верхние крылья зубчики задевают за сильно выдающуюся у самца радиальную жилку крыла. У самцов цикад есть своеобразный "голосовой аппарат" на нижней стороне заднегруди: действие его основано на чрезвычайно быстром колебании хитиновой перепонки, приводимой в движение сокращением мышц. Значение способности издавать звуки заключается, по-видимому, в привлечении стрекочущими самцами самок.

Хеморецепторы насекомых представлены обонятельными и вкусовыми сенсиллами. Кутикулярные образования обонятельных сенсилл очень разнообразны по форме: щетинки, конусовидные придатки, пластинки и т. п. Общая черта - наличие тонких пор, пронизывающих кутикулу. Через эти поры открыт доступ к чувствительным элементам сенсиллы для молекул пахучих веществ. Обонятельные сенсиллы располагаются главным образом на сяжках и челюстных щупиках.


Обоняние служит насекомым как для отыскания пищи, так и при спаривании: самцы часто находят самок по запаху. Последние выделяют особые пахучие вещества - половые аттрактанты. Достаточно ничтожного количества (100 молекул в 1 см 3 воздуха) такого вещества, чтобы вызвать возбуждение у самцов шелкопряда.

Вкусовые сенсиллы располагаются у насекомых на ротовых конечностях и дистальных члениках лапок. Их кутикулярные элементы представлены волосками или конусовидными придатками и также пронизаны порами. В состав каждой сенсиллы входит несколько рецепторных клеток, каждая из которых реагирует на определенный вкусовой раздражитель: одна клетка реагирует на соли, другая на сахаристые вещества, третья на чистую воду. Одна из чувствительных клеток вкусовой сенсиллы является механорецепторной. Таким образом, у насекомых, так же как и у позвоночных, вкусовое ощущение сопровождается осязательным.

Наиболее сложными из органов чувств у насекомых являются органы зрения . Последние представлены образованиями нескольких типов, из которых важнейшие - сложные фасетированные глаза примерно такого же строения, как и сложные глаза ракообразных.

Глаза состоят из отдельных омматидиев, количество которых определяется главным образом биологическими особенностями насекомых. Активные хищники и хорошие летуны, стрекозы обладают глазами, насчитывающими до 28 000 фасеток в каждом. В то же время муравьи (отр. Перепончатокрылые), особенно рабочие особи видов, обитающих под землей, имеют глаза, состоящие из 8-9 омматидиев.



Каждый омматидий представляет совершенную фотооптическую сенсиллу. В его состав входят оптический аппарат, включающий роговицу, - прозрачный участок кутикулы над омматидием и так называемый хрустальный конус. В совокупности они выполняют роль линзы. Воспринимающий аппарат омматидия представлен несколькими (4-12) рецепторными клетками; специализация их зашла очень далеко, о чем говорит полная утрата ими жгутиковых структур. Собственно чувствительные части клеток - рабдомеры - представляют скопления плотно упакованных микроворсинок, располагаются в центре омматидия и тесно прилегают друг к другу. В совокупности они образуют светочувствительный элемент глаза - рабдом.

По краям омматидия залегают экранирующие пигментные клетки; последние довольно существенно отличаются у дневных и ночных насекомых. В первом случае пигмент в клетке неподвижен и постоянно разделяет соседние омматидии, не пропуская световые лучи из одного глазка в другой. Во втором случае пигмент способен перемещаться в клетках и скапливаться только в их верхней части. При этом лучи света попадают на чувствительные клетки не одного, а нескольких соседних омматидиев, что заметно (почти на два порядка) повышает общую чувствительность глаза. Естественно, что подобного рода адаптация возникла у сумеречных и ночных насекомых. От чувствительных клеток омматидия отходят нервные окончания, образующие зрительный нерв.

Кроме сложных глаз многие насекомые имеют еще и простые глазки, строение которых не соответствует строению одного омматидия. Светопреломляющий аппарат линзообразной формы, сразу же под ним расположен слой чувствительных клеток. Весь глазок одет чехлом из пигментных клеток. Оптические свойства простых глазков таковы, что воспринимать изображения предметов они не могут.

Личинки насекомых в большинстве случаев обладают только простыми глазками, отличающимися, однако, по строению от простых глазков взрослых стадий. Никакой преемственности между глазками взрослых особей и личинок не существует. Во время метаморфоза глаза личинок полностью резорбируются.

Зрительные способности насекомых совершенны. Однако структурные особенности сложного глаза предопределяют особый физиологический механизм зрения. Животные, имеющие сложные глаза, обладают "мозаичным" зрением. Малые размеры омматидиев и их обособленность друг от друга приводят к тому, что каждая группа чувствительных клеток воспринимает лишь небольшой и сравнительно узкий пучок лучей. Лучи, падающие под значительным углом, поглощаются экранирующими пигментными клетками и не достигают светочувствительных элементов омматидиев. Таким образом, схематично каждый омматидии получает изображение только одной небольшой точки объекта, находящегося в поле зрения всего глаза. Вследствие этого изображение складывается из стольких световых точек, отвечающих различным частям объекта, на сколько фасеток падают перпендикулярно лучи от объекта. Общая картина комбинируется как бы из множества мелких частичных изображений путем приложения их одного к другому.

Восприятие цвета насекомыми также отличается известным своеобразием. Представители высших групп Insecta имеют цветовое зрение, основанное на восприятии трех основных цветов, смешение которых и дает все красочное многообразие окружающего нас мира. Однако у насекомых по сравнению с человеком наблюдается сильный сдвиг в коротковолновую часть спектра: они воспринимают зелено-желтые, синие и ультрафиолетовые лучи. Последние для нас невидимы. Следовательно, цветовое восприятие мира насекомыми резко отличается от нашего.

Функции простых глазков взрослых насекомых требуют еще серьезного изучения. По-видимому, они в какой-то мере "дополняют" сложные глаза, влияя на активность поведения насекомых в разных условиях освещенности. Кроме того, было показано, что простые глазки наряду со сложными глазами способны воспринимать поляризованный свет.

Помимо перечисленных органов чувств насекомые обладают еще рядом рецепторных аппаратов. Таковы сенсиллы, воспринимающие температуру окружающей среды, ее влажность. Водные насекомые способны регистрировать изменения давления и т. п.

Органы дыхания. Для дыхания служит сложно развитая система трахей. По бокам тела находится до 10 пар, иногда меньше, дыхалец, или стигм: они лежат на средне- и заднегруди и на 8 члениках брюшка.



Стигмы часто снабжены особыми замыкательными аппаратами и ведут каждая в короткий поперечный канал, а все поперечные каналы соединены между собой парой (или больше) главных продольных трахейных стволов. От стволов берут начало более тонкие трахеи, ветвящиеся многократно и опутывающие своими разветвлениями все органы. Заканчивается каждая трахея концевой клеткой с радиально расходящимися отростками, пронизанными конечными канальцами трахеи. Концевые веточки этой клетки (трахеолы) проникают даже внутрь отдельных клеток тела. Иногда трахеи образуют местные расширения, или воздушные мешки, которые служат у наземных насекомых для улучшения вентиляции воздуха в трахейной системе, а у водных, вероятно, в качестве резервуаров, увеличивающих запас воздуха в теле животного. Трахеи возникают у зародыша насекомых в виде глубоких впячиваний эктодермы; как и остальные эктодермальные образования, они выстланы кутикулой. В поверхностном слое последней образуется спиральное утолщение, придающее трахее эластичность и препятствующее спадению стенок.

В простейших случаях поступление кислорода в трахейную систему и удаление из нее углекислого газа происходит путем диффузии через постоянно открытые стигмы. Это наблюдается, однако, только у малоактивных насекомых, обитающих в условиях повышенной влажности.

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.

Ещё в далёком детстве многие из нас задавались столь пустяковыми, казалось бы, вопросам о насекомых, вроде таких, как: сколько глаз у обыкновенной мухи, почему паук плетёт паутину, а оса может укусить.

Наука энтомология имеет ответы практически на любые из них, но сегодня мы призовём знания исследователей природы и поведения для того, чтобы разобраться с вопросом, что собой являет зрительная система этого вида.

Мы проанализируем в этой статье, как видит муха и почему это назойливое насекомое так трудно прихлопнуть мухобойкой или поймать ладошкой на стене.

Комнатная жительница

Комнатная или домашняя муха относится к семейству настоящих мух. И пусть тема нашего обзора касается всех видов без исключения, мы позволим себе для удобства рассматривать всё семейство на примере именно этого столь хорошо всем знакомого вида домашних нахлебников.

Обыкновенная домашняя муха является весьма непримечательным внешне насекомым. Она имеет серо-чёрную окраску туловища, с некоторыми намёками на желтизну в нижней части брюшка. Длина взрослой особи редко превышает 1 см. Насекомое имеет две пары крыльев и фасеточные глаза.

Фасеточные глаза — в чём суть?

Зрительная система мухи включает в себя два больших глаза, расположенных по краям головы. Каждый из них имеет сложную структуру и состоит из множества мелких шестигранных фасеток, отсюда и название такого типа зрения, как фасеточное.


Всего мушиный глаз имеет в своей структуре более 3,5 тысячи таких микроскопических составляющих. И каждая из них способна улавливать лишь мизерную часть общего изображения, передавая информацию о полученной мини-картинке в мозг, который собирает все пазлы этой картины воедино.

Если сравнивать фасеточное зрение и бинокулярное, которым располагает человек, например, можно быстро убедиться в том, что предназначение и свойства каждого диаметрально противоположны.

Более развитым животным свойственно концентрировать зрение на определённой узкой области или на конкретном объекте. Насекомым же важно не столько видеть конкретный предмет, сколько быстро ориентироваться в пространстве и замечать приближение опасности.

Почему её так сложно поймать?

Этого вредителя действительно очень непросто застать врасплох. Причина не только в повышенной реакции насекомого в сравнении с медлительным человеком и способности срываться с места практически мгновенно. Главным образом, столь высокий уровень реакции обусловлен своевременным восприятием мозга этого насекомого изменений и движений в радиусе обзора его глаз.

Зрение мухи позволяет ей видеть практически на 360 градусов. Такой тип зрения называется ещё панорамным. То есть каждый глаз даёт обзор на 180 градусов. Этого вредителя практически нельзя застать врасплох, даже если подходить к ней сзади. Глаза этого насекомого позволяют контролировать всё пространство вокруг неё, тем самым обеспечивая стопроцентную круговую зрительную оборону.

Есть ещё интересная особенность зрительного восприятия мухой палитры цветов. Ведь почти все виды иначе воспринимают те или иные цвета, привычные нашему глазу. Некоторые из них насекомые не различают вообще, другие выглядят для них иначе, в других тонах.

Кстати, помимо двух фасеточный глаз, у мухи имеются ещё три простых глаза. Они расположены в промежутке между фасеточными, на лобной чисти головы. В отличие от сложных глаз, эти три используются насекомым для распознавания того или иного объекта в непосредственной близости.

Таким образом, на вопрос, сколько все-таки глаз у обыкновенной мухи, можем теперь смело ответить – 5. Два сложных фасеточных, разделённых на тысячи омматидиев (фасеток) и предназначенных для максимально обширного контроля за изменениями окружающей среды вокруг неё, и три простых глаза, позволяющих, что называется, наводить резкость.

Взгляд на мир

Мы уже говорили, что мухи дальтоники, и различают либо не все цвета, либо видят привычные нам предметы в других цветовых тонах. Также этот вид способен различать ультрафиолет.

Следует ещё сказать, что при всей уникальности своего зрения эти вредители практически не видят в темноте. Ночью муха спит, поскольку её глаза не позволяют этому насекомому промышлять в тёмное время суток.

А ещё эти вредители имеют свойство хорошо воспринимать только более мелкие и находящиеся в движении объекты. Насекомое не различает такие большие предметы, как человек, например. Для мухи это не более чем ещё одна часть интерьера окружающей среды.

А вот приближение руки к насекомому его глаза прекрасно улавливают и своевременно дают нужный сигнал мозгу. Так же, как и увидеть любую другую стремительно надвигающуюся опасность не составит труда этим пронырам, благодаря сложной и надёжной системе слежения, которой снабдила их природа.

Заключение

Вот мы и проанализировали, как выглядит мир глазами мухи. Теперь мы знаем, что эти вездесущие вредители обладают, как и все насекомые, удивительным зрительным аппаратом, позволяющим им не терять бдительности, и в светлое время суток держать круговую наблюдательную оборону на все сто.

Зрение обыкновенной мухи напоминает сложную систему слежения, включающую в себя тысячи мини-камер наблюдения, каждая из которых предоставляет насекомому своевременную информацию о том, что происходит в ближайшем диапазоне.