Фибринолиз. Повышен фибринолиз Превращение плазминогена в плазмин

Фибринолиз является неотъемлемой частью системы гемостаза, всегда сопровождает процесс свертывания крови и активируется факторами, принимающими участие в этом процессе. Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Кроме того, фибринолиз ведет к реканализации сосудов после остановки кровотечения.

Ферментом, разрушающим фибрин, является плазмин (иногда его называют «фибринолизин»), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена.

Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена (ТАП) и урокиназа. Последняя также образуется в юкстагломерулярном комплексе (аппарате) почки. Внутренний механизм активации фибринолиза осуществляется плазменными активаторами, а также активаторами форменных элементов крови - лейкоцитов, тромбоцитов и эритроцитов и разделяется на Хагеман-зависимый и Хагеман-независимый. Хагемаи-зависимый фибринолиз протекает под влиянием факторов ХIIа, калликреина и ВМК, которые переводят плазминоген в плазмин. Хагеман-независимый фибринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от нестабилизированного фибрина, образующегося в процессе внут-рисосудистого свертывания крови.

Образовавшийся в результате активации плазмин вызывает расщепление фибрина. При этом появляются ранние (крупномолекулярные) и поздние (низкомолекулярные) ПДФ.

В плазме находятся и ингибиторы фибринолиза. Важнейшими из них являются а²-антиплазмин, связывающий плазмин, трипсин, калликреин, урокиназа, ТАП и, следовательно, вмешивающийся в процесс фибринолиза как на ранних, так и на поздних стадиях. Сильным ингибитором плазмина служит ai-протеазный ингибитор. Кроме того, фибринолиз тормозится да-макроглобулином, Ci-протеазным ингибитором, а также рядом ингибиторов активатора плазминогена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.

Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тромбозов, эмболий и ДВС-синдрома.

Наряду с ферментативным фибринолизом, по мнению профессора Б.А.Кудряшова, существует так называемый неферментативный фибринолиз, который обусловлен комплексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фибрина s.

Регуляция свертывания крови и фибринолиза

Свертывание крови, контактирующей с травмированными тканями, осуществляется за 5-10 мин. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протромбина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция) или удлиняться (возникает гипокоагуляция).

Значительный вклад в изучение регуляции свертывания крови и фибринолиза внесли отечественные ученые Е.С.Иваницкий-Василенко, А.А.Маркосян, Б.А.Кудряшов, С.А.Георгиева и др.

Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина s в сосудистом русле. Однако благодаря одновременной активации фибринолиза, носящего защитный характер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.

Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях обусловлены повышением тонуса симпатической нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тромбопластина, и наблюдается отрыв клеточных мембран от эндотелия, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза.

В случае повышения тонуса парасимпатической нервной системы (раздражение блуждающего нерва, введение АХ, пилокарпина) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка. Напомним также, что в эндотелии сосудов синтезируется Pgb, препятствующий в кровотоке адгезии и агрегации тромбоцитов. Вместе с тем развивающаяся гиперкоагуляция может смениться гипокоагу-ляцией, которая в естественных условиях носит вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагулянтов, а также рефлекторным выбросом в сосудистое русло в ответ на появление фактора На, гепарина и антитромбина III (см. схему 6.4).

При многих заболеваниях, сопровождающихся разрушением эритроцитов, лейкоцитов, тромбоцитов и тканей и или гиперпродукцией апопротеина III стимулированными эндотелиальными клетками, моноцитами и макрофагами (эта реакция опосредована действием антигенов и интерлейкинов), развивается ДВС-синдром, значительно отягощающий течение патологического процесса и даже приводящий к смерти больного. В настоящее время ДВС-синдром обнаружен более чем при 100 различных заболеваниях. Особенно часто он возникает при переливании несовместимой крови, обширных травмах, отморожениях, ожогах, длительных оперативных вмешательствах на легких, печени, сердце, предстательной железе, всех видах шока, а также в акушерской практике при попадании в кровоток матери околоплодных вод, насыщенных тромбопластином плацентарного происхождения. При этом возникает гиперкоагуляция, которая из-за интенсивного потребления тромбоцитов, фибриногена, факторов V, VIII, XIII и др. в результате интенсивного внутрисосудистого свертывания крови сменяется вторичной гипокоагуляцией вплоть до полной неспособности крови к образованию фибриновых сгустков, что приводит к трудно поддающимся терапии кровотечениям.

Знание основ физиологии гемостаза позволяет клиницисту избрать оптимальные варианты борьбы с заболеваниями, сопровождающимися тромбозами, эмболиями, ДВС-синдромом и повышенной кровоточивостью

Внутренний и внешний путь активизации

Схема фибринолиза. Синие стрелки - стимуляция; красные стрелки - подавление

Фибринолиз, как и процесс свертывания крови, протекает по внешнему или внутреннему механизму. Внешний путь активации осуществляется при неотъемлемом участии тканевых активаторов, синтезирующихся преимущественно в эндотелии сосудов. К данным активаторам относят тканевый активатор плазминогена (ТАП) и урокиназу.

Внутренний механизм активации осуществляется благодаря плазменным активаторам и активаторами форменных элементов крови - лейко­цитов, тромбоцитов и эритроцитов . Внутренний механизм активации разделяют на на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз происходит под влиянием фактора XIIа свертывания крови, калликреина, которые вызывают превращение плазминогена в плазмин. Хагеман-независимый фибринолиз происходит наиболее быстро. Его основным назначением является очищение сосудистого русла от нестабилизированного фибрина, который образуется в процессе внутрисосудистого свертывания крови .

Ингибирование фибринолиза

Фибринолитическая активность крови во многом определяется именно соотношением ингибиторов и активаторов процесса фибринолиза.

Регуляция фибринолиза


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Фибринолиз" в других словарях:

    Фибринолиз … Орфографический словарь-справочник

    - (от фибрин и...лиз), растворение внутрисосудистых тромбов и внесосудистых сгустков фибрина под действием протеолитич. ферментов плазмы крови и форменных элементов, в первую очередь плазмина. Белки, осуществляющие Ф., составная часть противо… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 1 растворение (14) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (фибрин + греч. lysis распад, разложение) процесс растворения фибринового сгустка в результате ферментативных реакций; при тромбозе ф. приводит к канализации тромба … Большой медицинский словарь

    - (от Фибрин и греч. lýsis – разложение, растворение) растворение внутрисосудистых тромбов и внесосудистых отложений фибрина под действием фермента Фибринолизина. Имеет важное значение для сохранения жидкого состояния крови и проходимости… … Большая советская энциклопедия

    ФИБРИНОЛИЗ - (fibrinolysis) процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется… … Толковый словарь по медицине

    фибринолиз - фибролизин … Краткий словарь анаграмм

    - (син. фибриногенолиз трупной крови) Ф. крови трупа при внезапной смерти, вследствие чего такая кровь остается несвернувшейся; причины Ф. т. к. неясны … Большой медицинский словарь

    Процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Последний присутствует в плазме крови в виде пассивного предшественника (плазминогена), который активируется одновременно с… … Медицинские термины

    фибринолизин - фибринолиз ин, а … Русский орфографический словарь

Книги

  • Фармакология и фармакотерапия (комплект из 2 книг) , Сатоскар Р.С. , Бандаркар С.Д. , Первый том двухтомного руководства посвящен общим вопросам фармакологии. В нем рассмотрены пути введения и биологическое действие лекарственных веществ, их метаболизм и экскреция, механизм,… Категория: Фармакология, рецептура Издатель: Медицина ,
  • Журнал «Лечащий Врач» № 01/2015 , Открытые системы , Журнал «Лечащий Врач» – профессиональное медицинское издание. Новости медицинского и фармацевтического рынков, научно-практические статьи для врачей общей практике, терапевтов, педиатров,… Категория: Медицина Серия:

Фибринолитический синдром - геморрагический синдром, вызываемый чрезмерной фибринолитической деятельностью, который может появляться в множестве клинических вариантов. В прошлом его включали в категорию плазматических геморрагических диатезов, но в 1959 г. Sherry индивидуализировал его как самостоятельную нозологическую сущность.

Клиника фибринолитического синдрома . С клинической точки зрения, геморрагический синдром может принимать различные аспекты: эпистаксис, крупные экхимозы с контуром географической карты, гастроинтестинальные кровотечения, геморрагии на местах инъекций или пункций, геморрагии после хирургических вмешательств. Вначале эти явления имеют умеренный характер; с течением времени они станивятся все более тяжелыми, так как к ним присоединяются различные недостатки гемостаза, вызываемые самим развитием фибринолитического процесса; в конце концов геморрагический синдром становится таким тяжелым, что ставит в опасность жизнь больного.

Патофизиология фибринолитического синдрома . Нормальное действие механизма фибринолиза обеспечивается динамическим равновесием между активаторами и ингибиторами. Всякий раз когда преобладают активаторы, нарушение равновесия проявляется клинически как фибринолитический синдром; чем больше несоответствие, тем суровее клинический аспект.

Фибринолиз может выступать как самостоятельное расстройство (первичное) или как последствие простой или диссеминированной внутрисосудистой коагуляции (вторичное). Первичный фибринолиз может происходить по поводу роста активаторов плазминогена (спонтанный) или введения вциркуляцию активаторов для лизирования известных тромбов (терапевтически).

Во всех случаях результатом является высвобождение плазмина, который, благодаря своему литическому действию на фибрин, фибриноген, Ф. V, Ф. VIII вызывает геморрагический синдром, описанный в разделе симптоматологии.

Первичный фибринолиз бывает крайне редко (5%); вторичный встречается гораздо чаще.

Лабораторное исследование для диагностики фибринолитического синдрома . Результаты лабораторных тестов представляют большое разнообразие в зависимости от момента когда они производятся и от типа фибринолиза больного (первичного или вторичного). Ниже мы остановимся на тестах первичного фибринолиза, так как вторичный фибринолиз будет представлен в связи с синдромом ДВС.

Т.Н., РТТ и T.Q. могут быть слегка удлиненными (F.D.P. интерферирует с функцией тромбоцитов и с активностью тромбина, а плазма лизирует Ф. V и VIII). Сгустки проб маленькие (мало фибриногена). TLCE значительно сокращен; чем он короче, тем тяжелее синдром. Тест Аструпа (с пластинками фибрина) позволяет выделять каузальный агент фибринолиза: лизокиназа, активатор, плазмин. TEG представляет характерную трассу, вида теннисной ракеты. Тест выявления FDP позитивный (со степенями от + до + + + +).

Дозировка фибриногена дает тем более низкие цифры, чем сильнее фибринолиз. Остальные тесты на гемостаз и коагуляцию дают нормальные результаты.

Положительный клинический диагноз фибринолитического синдрома основывается на следующем: позднее появление кровотечения, картообразный контур экхимозов, кровотечения на месте инъекций и пункций, маленький и хрупкий сгусток, который высвобождает большое количество эритроцитов (когда синдром тяжелый - кровь теряет способность коагулироваться!).

Лабораторные исследования показывают почти нормальные тесты на коагуляцию наряду с позитивными тестами на фибринолиз, что позволяет ставить несомненный диагноз. Дифференциальная диагностика производится по отношению к остальным геморрагическим диатезам. Обстоятельства, при которых возникают кровотечения и лабораторные результаты выясняют неоспоримо диагноз.

Течение и осложнения фибринолитического синдрома . Фибринолитический синдром может иметь очень разнообразную эволюцию. В рамках такой эволюции хронический и острый фибринолитические синдромы находятся на двух крайностей.


Хронический синдром имеет доброкачественную эволюцию и без осложнений. Он может обостряться по поводу хирургического вмешательства, произведенного без антифибринолитической защиты.

Острый или молниеносный синдром имеет драматичную эволюцию. Смерть может наступать до постановки диагноза и назначения лечения. В диагностицированных и леченных по современным методам случаях получаются благоприятные результаты еще в первые 12 часов.

Лечение фибринолитического синдрома относится к острому синдрому и преследует цель прекращения геморрагического синдрома. В качестве эффективных средств можно использовать:
а) Антифибринолитические, которые пресекают механизм фибринолиза; этого можно добиться двумя способами:
1) Антиплазминовое действие: блокирование плазмина, которое осуществляют антиплазмины или протеазовые ингибиторы, двух типов: ингибитор Kunitz, изготовляемый из поджелудочной железы и выпускаемый в продажу под названием Iniprol и ингибитор Frey, изготовляемый из околоушной слюнной железы и выпускаемый в продажу под названием Trasylol (первый в десять раз более активный чем второй).
2) Антиактивирующее действие: блокирование активации плазминогена в плазмин, которое осуществляют синтетические вещества двух типов: с линейной молекулой (ЕАСА) и циклической молекулой (АМСНА) (последнее в 7 раз более активное чем первое).

б) Субституционные: инъецируемый фибриноген и лиофилизированная антигемофилическая плазма, оба содержащие факторы коагуляции, которые в процессе гиперфибринолиза были лизированы в плазме больного и которые мы замещаем при помощи перфузии.

Схема лечения фибринолитического синдрома : мы начинаем с применения Trasylol 1 000 000 Ед в виде медленной перфузии в течение 24 часов. Через час после начала перфузии Trasylol-ом, инъецируется медленно в.в. ЕАСА в дозе 0,3 г/кг веса тела/день, разделенной на 4 приема (по 1 через 6 часов).

Спустя 2 часа от первой инъекции ЕАСА, инъецируется в.в. фибриноген 2 г и продолжается перфузия одного флакона лиофилизированной антигемофилической плазмы. Обычно за 24 часа эффект лечения оказывается благоприятным, так что его следует прервать; если состояние больного требует этого, мы повторяем на следующий день то же лечение. (Внимание! при вторичном фибринолизе все вышеуказанное лечение должно предшествоваться введением гепарина: 40 000 Ед/день, по 10 000 Ед в.в., через 6 часов в течение 2-3 дней).

Термином "фибринолиз" обозначается процесс растворения кровяного сгустка. В процессе коагуляции фибринолиз предотвращает нарушение микроциркуляции в регионах организма вне зоны повреждения, после остановки кровотечения - реканализацию тромба и восстановление кровоснабжения в дистальных по отношению места образования тромба тканях. процесс разрушения (лизиса) тромба, связан с расщеплением фибрина и фибриногена системой ферментов, активным компонентами которых является плазмин. Плазмин гидролизует фибрин, фибриноген, факторы V, VII, XII, протромбин.

Плазмин в крови находится в неактивном состоянии в виде плазминогена и активируется тканевыми и кровяными активаторами. Тканевые активаторы плазминогена синтезируются эндотелием сосудов. Наибольшее значение среди них имеют тканевой активатор плазминогена (ТАП) и урокиназа, которая вырабатывается в почке юкстагиомерулярным аппаратом.

Внутренний путь активации делят на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый осуществляется ф XIIа, ВМК и капликреина. Хагеман-независтмый протекает по механизму срочных реакций и осуществляется протеиназами плазмы. В плазме есть ингибиторы фибринолиза: a 2 - антиплазмин, С 1 и a 1 -протеазные ингибиторы, a 2 - макроглобулин. Активаторами являются: специфический активатор из эндотелиальных клеток; активированный фактор ХII при взаимодействии с калликреином и высокомолекулярным кининогеном; урокиназа, вырабатываемая почкой; бактериальная стрептокиназа.

Нарушение процесса свертывания крови происходит при недостатке или отсутствии какого-либо фактора, участвующего в гомеостазе. Так, например, известно наследственное заболевание гемофилия, которое встречается только у мужчин и характеризуется частыми и длительным кровотечением. Это заболевание обусловлено дефицитом факторов VIII и IX, которые называются антигемофильными.

Свертывание крови может протекать под влиянием факторов, ускоряющих и замедляющих этот процесс.

Факторы, ускоряющие процесс свертывания крови:

Разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови);

Ионы кальция (участвуют во всех основных фазах свертывания крови);

Тромбин;

Витамин К (участвует в синтезе протромбина);

Тепло (свертывание крови является ферментативным процессом);

Адреналин.

В нормальных условиях кровь в сосудах всегда находится в жидком состоянии, хотя условия для образования внутрисосудистых тромбов существуют постоянно. Поддержание жидкого состояния крови обеспечивается механизмами саморегуляции благодаря существованию соответствующих функциональных систем. Главными звеньями поддержания жидкого состояния крови являются свертывающая и противосвертывающая системы. В настоящее время принято выделять две противосвертывающие системы - первую и вторую.



Первая противосвертывающая система (ППС) осуществляет нейтрализацию тромбина в циркулирующей крови при условии его медленного образования и в небольших количествах. Нейтрализация тромбина осуществляется антикоагулянтами, которые постоянно находятся в крови и поэтому ППС функционирует постоянно. К таким веществам относятся:

Фибрин, который адсорбирует часть тромбина;

Антитромбины препятствуют превращению протромбина в тромбин;

Гепарин блокирует фазу перехода протромбина в тромбин и фибриногена в фибрин, а также тормозит первую фазу свертывания крови;

Продукты лизиса (разрушения фибрина) , которые обладают антитромбиновой активностью, тормозят образование протромбиназы;

Клетки ретикуло-эндотелиальной системы поглощают тромбин плазмы крови.

При быстром нарастании количества тромбина в крови ППС не может предотвратить образование внутрисосудистых тромбов. В этом случае в действие вступает вторая противосвертывающая система (ВПС), которая обеспечивает поддержание жидкого состояния крови в сосудax рефлекторно-гуморальным путем. Резкое повышение концентрации тромбина в циркулирующей крови приводит к раздражению сосудистых хеморецепторов. Импульсы от них поступают в гигантоклеточное ядро ретикулярной формации продолговатого мозга, а затем по эфферентным путям к ретикуло-эндотелиальной системе (печень, легкие и др.) . В кровь выделяются в больших количествах гепарин и вещества, которые осуществляют и стимулируют фибринолиз (например, активаторы плазминогена).

Гепарин ингибирует первые три фазы свертывания крови, вступает в связь с веществами, которые принимают участие в свертывании крови. Образующиеся при этом комплексы с тромбином, фибриногеном, адреналином, серотонином, фактором X11I и др. обладают антикоагулянтной активностью и литическим действием на нестабилизированный фибрин.

Регуляция свертывания крови.

Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нсрвнои системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций: высвобождение из сосудистой стенки тромбопластина, который быстро превращается в тканевую протромбиназу; адреналин активирует фактор XII, который является инициатором образования кровяной протромбиназы; адреналин активирует тканевые липазы, которые расщепляют жиры и тем самым увеличивается содержание жирных кислот в крови, обладающих тромбопластической активностью; адреналин усиливает высвобождение фосфолипидов из форменных элементов крови, особенно из эритроцитов.

Раздражение блуждающего нерва или введение ацетилхолина приводит к выделению из стенок сосудов веществ, аналогичных тем, которые выделяются при действии адреналина. Следовательно, в процессе эволюции в системе гемокоагуляции сформировалась лишь одна защитно-приспособительная реакция - гиперкоагулемия, направленная на срочную остановку кровотечения. Идентичность сдвигов гемокоагуляции при раздражении симпатического и парасимпатического отделов вегетативной нервной системы свидетельствует о том, что первичной гипокоагуляции не существует, она всегда вторична и развивается после первичной гиперкоагуляции как результат (следствие) расходования части факторов свертывания крови.

Ускорение гемокоауляции вызывает усиление фибринолиза, что обеспечивает расщепление избытка фибрина. Активация фибринолиза наблюдается при физической работе, эмоциях, болевом раздражении.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

Система свертывания крови входит в состав более обширной системы - системы регуляции агрегатного состояния крови и коллоидов (PACK), которая поддерживает постоянство внутренней среды организма и ее агрегатное состояние на таком уровне, который необходим для нормальной жизнедеятельности путем обеспечения поддержания жидкого состояния крови, восстановления свойств стенок сосудов, которые изменяются даже при нормальном их функционировании. Система свертывания крови в организме все время находится в активном состоянии, что обусловлено непрерывным выделением тромбопластина из естественно разрушающихся клеток. Гиперкоагуляция развивается в состояниях болевого и эмоционального стресса, протекающего с активацией симпатического отдела автономной нервной системы. Катехоламины способствуют освобождению из стенок тромбопластина. Адреналин непосредственно активирует фактор Хагемана, активирует тканевые липазы, что способствует повышению тромбопластической активности. Раздражение блуждающего нерва приводит к эффектам, аналогичным эффектам адреналина.

Внутрисосудистое превращение фибриногена в фибрин, в норме очень ограниченное, при шоке может значительно усиливаться. Фибринолиз - основной механизм, обеспечивающий в этих условиях поддержание жидкого состояния крови и проходимости сосудов, прежде всего - микроциркуляторного русЛа.

Фибринолитическая система включает в себя плазмин и его предшественник плазминоген, активаторы плазминогена и ингибиторы плазмина и активаторов (рис. 12.3). Фибринолитическая активность крови повышается при различных физиологических состояниях организма (физической нагрузке, психоэмоциональном напряжении и т. д.), что объясняется поступлением в кровь тканевых активаторов плазминогена (ТАП). В настоящее время можно считать установленным, что основным источником активатора плазминогена, обнаруживаемого в крови, являются клетки сосудистой стенки, главным образом эндотелий.

Несмотря на то что в экспериментах in vitro показано выделение ТАП из эндотелия, остается открытым вопрос, является ли такая секреция физиологическим феноменом или это просто следствие «утечки». В физиологических условиях, по-видимому, выделение ТАП из эндотелия очень мало. При окклюзии сосуда, стрессе этот процесс усиливается. В регуляции его играют роль биологически активные вещества: катехоламины, вазопрессин, гистамин; кинины усиливают, а ИЛ-1, ФНО и другие - уменьшают продукцию ТАП.

В эндотелии наряду с ТАП образуется и секретируется и его ингибитор - PAI-1 (plasminogen activator inhibitor-1). PAI-1 находится в клетках в большем количестве, чем ТАП. В крови

-ФХП
PAI-I- -
PAI-II -

альфа2 Макроглобулин------ *~Плазмин -

Фибриноген

(Д-фрагмент)

Рис. 12.3. Фибринолитическая система:

ТАП - тканевый активатор плазминогена; PAI-I - ингибитор ТАП; PAI-II - ингибитор урокиназы; а Гір С - активированный протеин С; ВМК - высокомолекулярный кининоген; ПДФ - продукты деградации фибрина (фибриногена); _ _ -

ингибирование;------------ - активация

и субклеточном матриксе PAI-1 связан с адгезивным гликопротеином - витронектином. В этом комплексе период биологического полураспада PAI-1 увеличивается в 2-4 раза. Благодаря этому возможна концентрация PAI-1 в определенном регионе и локальное угнетение фибринолиза. Некоторые цитокины (ИЛ-1, ФНО) и эндотелии подавляют фибринолитическую активность главным образом за счет увеличения синтеза и секреции PAI-1. При септическом шоке содержание PAI-1 в крови увеличено. Нарушение участия эндотелия в регуляции фибринолиза является важным звеном патогенеза шока. Обнаружение в крови большого количества ТАП еще не является свидетельством происходящего фибринолиза. Тканевый активатор плазминогена, как и сам плазминоген, имеет сильное сродство к фибрину. При выделении его в кровь не происходит генерации плазмина при отсутствии фибрина. Плазминоген и ТАП могут сосуществовать в крови, но не взаимодействовать. Активация плазминогена происходит на поверхности фибрина.

Активность ТАП, присутствующего в плазме человека, быстро исчезает как in vivo, так и in vitro. Период биологического полураспада ТАП, выделяющегося после введения здоровым людям никотиновой кислоты, составляет 13 мин in vivo и 78 мин in vitro. В элиминации ТАП из крови основную роль играет печень, при ее функциональной недостаточности наблюдается значительная задержка выведения. Инактивация ТАП в крови происходит также под влиянием физиологических ингибиторов.

Образование плазмина из плазминогена под влиянием тканевых активаторов рассматривается как внешний механизм акти-

вации плазминогена. Внутренний механизм связан с прямым или опосредованным действием ф. ХНа и калликреина (см. рис. 12.3) и демонстрирует тесную связь между процессами свертывания крови и фибринолиза.

Выявленное in vitro повышение фибринолитической активности крови не обязательно указывает на активацию фибринолиза в организме. Для первичного фибринолиза, развивающегося при массивном поступлении в кровь активатора плазминогена, характерны гиперплазминемия, гипофибриногенемия, появление продуктов распада фибриногена, уменьшение плазминогена, ингибиторов плазмина, уменьшение в крови ф. Y и ф. YIII. Маркерами активации фибринолиза являются пептиды, которые выявляются на ранней стадии действия плазмина на фибриноген. При вторичном фибринолизе, развивающемся на фоне гипокоагуляции, в крови снижено содержание плазминогена, плазмина, резко выражена гипофибриногенемия, обнаруживается большое количество продуктов деградации фибрина (ПДФ).

Изменение фибринолитической активности наблюдается при всех видах шока и имеет фазный характер: кратковременный период повышения фибринолитической активности и последующее ее снижение. В некоторых случаях, как правило при тяжелом шоке, на фоне ДВС развивается вторичный фибринолиз.

Наиболее выраженный первичный фибринолиз наблюдается при шоке от электротравмы, применяющемся с лечебной целью в психиатрической клинике и развивающемся в основном при прохождении тока через мозг. При этом резко уменьшается время лизиса эуглобулинов плазмы, что свидетельствует об активации фибринолиза. В это же время шок, возникающий при прохождении тока через грудную клетку, не сопровождается активацией фибринолиза. Показано, что эти различия объясняются не различным содержанием активатора плазминогена в мозге и сердце, а активацией фибринолиза, если электрошок сопровождается мышечными судорогами. Возможно, при этом происходит сдавление вен сокращенными мышцами и выделение активатора плазминогена из эндотелия (Tyminski W. et al., 1970).

В экспериментальных исследованиях показано, что при электрошоке активаторы плазминогена выделяются не только из эндотелия сосудов, но из сердца, коркового слоя почек и в меньшей степени легких, печени (Андреенко Г. В., Подорольская Л. В., 1987). В механизме выделения активатора плазминогена при электрошоке основное значение имеет нейро-гуморальная стимуляция. При травматическом шоке также нередко наблюдается первичный фибринолиз. Так, уже в ранние сроки после травмы (1-3 ч) у пострадавших отмечается повышение фибринолитической активности (Плешаков В.

Л., Цыбуляк Г. Н., 1971; Сувальская Л. А. и др., 1980). Определенную роль при этом может играть не только выделение сосудистого и тканевых активаторов плазминогена, но и активация ф. XII. Одним из механизмов активации фиб- ринолиза при травматическом шоке является снижение активности CI эстеразного ингибитора, который активирует ф. ХПа и калликреин. В результате увеличивается продолжительность циркуляции активаторов внутреннего фибринолиза. Степень активации фибринолиза может зависеть также от локализации травмы, так как содержание активатора плазминогена в различных тканях неодинаково.

Период биологического полураспада плазмина составляет около 0,1 с, он очень быстро инактивируется а2-антиплазмином, который образует с ферментом стабильный комплекс. Именно этим, по-видимому, можно объяснить, что в ряде случаев первичный фибринолиз в начальном периоде травматического шока не выявляется и более того наблюдается угнетение фибринолиза. Так, при травме органов брюшной полости (II--III стадии шока) на фоне гиперкоагуляции, наличия в крови растворимых комплексов фибрин-мономера фибринолитическая активность было снижена (Трушкина Т. В. и др., 1987). Возможно, это связано с резким увеличением продукции ингибиторов плазмина, как реакции на начальную кратковременную гиперплазминемию. Общая антиплаз- миновая активность увеличивается прежде всего за счет а2-анти- плазмина, а также ингибитора активатора плазминогена и гликопротеида, богатого гистидином. Такая реакция подробно описана I. A. Paramo и др. (1985) у больных в послеоперационном периоде.

После первичной активации фибринолиза при травме, осложненной шоком, развивается стадия снижения фибринолитической активности и/или вторичный фибринолиз. При стремительном развитии шока ДВС синдром и вторичный фибринолиз развиваются очень быстро (Дерябин И. И. и др., 1984).

В механизме угнетения фибринолиза при шоке имеет значение прежде всего увеличение общей антиплазминной активности (в основном а2-антиплазмина), а также гликопротеида, богатого гистидином, который вмешивается в связывание плазминогена с фибрином. На фоне уменьшения фибринолитической активности в системной циркуляции локальный фибринолиз в зоне повреждения, по-видимому, усилен. О этом свидетельствует количество ПДФ в крови после травмы.

Данные о фибринолитической активности крови при геморрагическом шоке весьма противоречивы, что объясняется различиями в объеме кровопотери, сопутствующими осложнениями и т. д. (Шутеу Ю. и др., 1981; Братусь В. Д., 1991). Экспериментальные данные также не внесли полной ясности в этот вопрос. Так, И. Б. Калмыкова (1979) наблюдала у собак после кровопотери (40-45 % ОЦК, АД = 40 мм рт. ст.) усиление фибринолиза на фоне гиперкоагуляции, а в фазе гипокоагуляции фибринолиз уменьшался. В аналогичных опытах в течение 3 часов после кровопотери Р. Garsia-Barreno и др. (1978) установили, что время лизиса эуглобулинов плазмы и концентрация фибриногена не изменялись, а через 6 ч наблюдалось некоторое угнетение фибринолиза.

Принципиально важным является то, что изменения фибринолиза при геморрагическом шоке вторичны, т. е. возникают на фоне циркуляторной гипоксии, метаболического ацидоза и т. д. При других видах шока активация фибринолиза может происходить независимо от гемодинамических нарушений (например, при электрошоке).

При септическом шоке фибринолитическая активность изменяется очень быстро и так же, как и при других видах шока, имеет фазный характер: усиление фибринолиза, угнетение, вторичный фибринолиз (развивается не во всех случаях). Р. Garcia-Bar- reno и др. (1978) проследили изменение фибринолитической активности крови у собак с эндотоксиновым шоком, начиная с 30-й мин и до 6 ч после выделения липополисахарида Escherichia coli. Фибринолитическая активность у подопытных животных резко возросла, концентрация фибриногена уменьшалась, а ПДФ через 1 ч обнаруживалась у 100 % животных. Следовательно, коагуло- патические изменения, в том числе и фибринолиз, развивались независимо от гемодинамических нарушений, гипоксии и т. д.

В механизме активизации фибринолиза при септическом шоке основное значение придается внутреннему пути активации плазминогена при участии ф. XII и калликреина (см. рис. 12.3). Первичный гиперфибринолиз при эндотоксиновом шоке развивается вследствие взаимодействия эндотоксина с сывороточной системой комплемента через активацию пропердиновой системы. Компонент СЗ и последние компоненты комплемента (С5-С9) активируют как фибринолиз, так и гемокоагуляцию.

Учитывая, что при септическом шоке происходит быстрое и сильное повреждение эндотелия, можно с уверенностью предположить участие внешнего механизма активации плазминогена. Наконец, при септическом шоке у больных выявлено снижение Cl-эстеразного ингибитора, являющегося ингибитором фибринолиза - инактивирует ф. ХПа и калликреин (Colucci М. et al.,

1985) . Вместе с тем под влиянием эндотоксина увеличивается образование быстродействующего ингибитора активатора плазминогена (Blauhut В. et al., 1985). Значение этого механизма регуляции еще предстоит изучить.

Если при травматическом, септическом, геморрагическом шоке и электрошоке большинство исследователей выделяют начальный период активации фибринолиза, то в ранней фазе кардиогенного шока фибринолитическая активность снижена, а в поздней повышена (Люсов В. А. и др., 1976; Грицюк В. И. и др., 1987). Вероятно, это объясняется тем, что острый инфаркт миокарда, осложненный кардиогенным шоком, развивается на фоне значительных изменений в системе гемостаза - гиперкоагуляции, напряжения фибринолитической системы и т. д. Это приводит к истощению запасов сосудистого активатора плазминогена, по- отому при кардиогенном шоке и не развивается первичный ги- перфибринолиз, несмотря на выраженную гиперадреналинемию. I более поздней стадии шока регистрируются гипофибриногене- лия, тромбоцитопения, уменьшение активности ф. И, Y, YII, положительные паракоагуляционные тесты, т. е. признаки внутрисосудистого свертывания крови, и на этом фоне развивается вторичный гиперфибринолиз.

Изменение фибринолитической активности при шоке не только демонстрирует нарушение функционального состояния системы гемостаза, но имеет и патогенетическое значение. Усиление фибринолиза в начальной стадии шока несомненно имеет положительное значение, так как растворение фибрина способствует сохранению суспензионной стабильности крови и микроциркуляции. С другой стороны, усиление фибринолиза на фоне дефицита прокоагулянтов нарушает коагуляционный механизм гемостаза. Продукты распада фибриногена и фибрина (ПДФ) обладают ан- титромбиновой, антиполимеразной активностью, тормозят адгезию и агрегацию тромбоцитов, что снижает эффективность тром- боцитарно-сосудистого гемостаза. Таким образом, патогенетическое значение усиления фибринолиза при шоке (особенно вторичного фибринолиза) заключается в том, что при этом повышается вероятность геморрагий.