Инструменты астрономов: эволюция телескопов и новейшие методы дистанционного изучения космоса. Развитие телескопов

Слово «телескоп» в переводе с греческого обозначает «далеко смотреть» (τῆλε - далеко + σκοπέω - смотрю). Это прибор, предназначенный для наблюдения небесных тел.

Самые первые чертежи простейшего линзового телескопа (однолинзового и двухлинзового) были обнаружены ещё в записях Леонардо Да Винчи (1509 год). Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну». Леонардо строит или, по крайней мере, рисует станки для шлифовки вогнутых зеркал и разбирает производство очковых линз. Несомненно, что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял. В кодексе А (лист 12) находятся следующие строки, поясненные рисунком: «Чем дальше отодвигаешь ты стекло от глаза, тем большими покажет оно предметы для глаз 50 лет; если глаза для сравнения глядят один через очковое стекло, другой вне его, то для одного предмет покажется большим, а для другого малым; но для этого видимые вещи должны быть удалены от глаза на 200 футов» . Леонардо передает здесь не все известное, но крайне просто повторимое наблюдение о значительных увеличениях, достигаемых при рассматривании простым глазом действительного изображения удаленного предмета от выпуклой линзы, если фокусное расстояния линзы больше, чем расстояние наилучшего зрения».
Годом изобретения телескопа, а точнее, зрительной трубы , считают 1608 год , а автором - голландского очкового мастера Иоанна Липперсгея , который продемонстрировал своё изобретение в Гааге. Но патент на изобретение ему не выдали, так как оказалось, что такие зрительные трубы были уже у других. Затем выяснилось, что такие трубы были еще раньше: в опубликованной в 1604 г. Кеплером работе было указано, что он рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз.

Таким образом, первенство изобретения прообраза телескопа (зрительной трубы) доказать трудно.

В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп длиной около полуметра с восьмикратным увеличением. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. В сравнением с сегодняшними телескопами, это был очень несовершенный телескоп, обладавший всеми возможными аберрациями (ошибками или погрешностями изображения в оптической системе). Несмотря на это, с помощью этого несовершенного телескопа Галилей сделал ряд открытий.
Но сам Галилей свои астрономические зрительные трубы называл perspicillum .
Название «телескоп» предложил в 1611 году греческий математик Джованни Демизиани .
Первый телескоп Галилея имел апертуру (способность собирать свет и противостоять размытию деталей изображения) 4 сантиметра, фокусное расстояние около 50 сантиметров и степень увеличения 3x. Второй телескоп имел апертуру 4,5 сантиметра, фокусное расстояние 125 сантиметров, степень увеличения 34х. Несмотря на то, что телескопы Галилея были весьма несовершенны, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны (дополнительно была измерена их высота), наличие у диска Сатурна придатков в двух противоположных точках (природу этого явления Галилей разгадать не смог).

Устройство телескопа

Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр. Объектив создаёт уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости (плоскость, на которой расположены точки, в которых собираются попавшие в систему плоскопараллельные пучки лучей). Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Телескоп Галилео Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками этого телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях и иногда в самодельных любительских телескопах. В связи с тем, что телескоп Галилея дает прямое изображение, он может быть использован и как подзорная труба.

Муниципальное образовательное учреждение

«Лицей №2»

Экзаменационная работа по астрономии (реферат)

Телескопы

Выполнила: Мажарова Евгения,

ученица группы Х3-1

Проверила: Гончарова Наталья Владимировна,

учитель астрономии

Назначение телескопа..…………………………………………………………...4

Принципиальная схема телескопа……………………………………………….4

Приложение……………………………………………………………………....11

Введение

В своей работе я хочу рассказать о предназначении телескопа, о видах, на которые они делятся, и о их характеристиках. А так же, я бы хотела освятить историю телескопа.

Основным прибором, который используется в астрономии для наблюдения небесных тел, приема и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele - далеко и skopeo - смотрю.Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа - его объектива. Объективы бывают зеркальными и линзовыми.

Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. Все оптические телескопы можно разделить на три вида:

Рефрактор;

Рефлектор;

Зеркально-линзовые.

В телескопах-рефракторах (а) свет собирается 2х-линзовым объективом и фокусируется в точке F. Телескоп-рефлектор же (b) использует для этой цели вогнутое зеркало. В зеркально-линзовых, или катадиоптрических, телескопах (с) применяется сочетание линз и зеркал, что позволяет применять более короткие и портативные трубы. Все телескопы используют окуляр (расположенный за точкой фокуса F) для увеличения изображения, сформированного основной оптической системой.

Телескопы-рефракторы . Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Чтобы избежать хроматической аберрации, линзовые объективы делают составными. Однако в случаях, когда требуется свести к минимуму рассеяние в системе, приходится использовать и одиночную линзу. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.

Самый большой рефрактор в мире, который находится в Йеркской обсерватории в США, имеет линзу диаметром в 1 м. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.

Телескопы-рефлекторы . Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия). Точность изготовления поверхности зеркала, т.е. максимально допустимые отклонения от заданной формы, зависит от длины волны света, на которой будет работать зеркало. Точность должна быть лучше, чем λ/8. К примеру, зеркало, работающее в видимом свете (длина волны λ = 0,5 микрона), должно быть изготовлено с точностью 0,06 мкм (0,00006 мм).

Зеркально-линзовые (катадиоптрические) телескопы - используют вместе и линзы и зеркала, что дает оптическую конструкцию позволяющую добиться отличного разрешения и качества изображения, при этом используя сверхкороткие, ультрапортативные оптические трубы.

Назначение телескопа

При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:

· создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);

· собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.

Принципиальная схема телескопа.

Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса – выше или ниже. Это изображение с помощью окуляра рассматривает наблюдатель. Диаметры входного и выходного пучков сильно различаются (входной имеет диаметр объектива, а выходной – диаметр изображения объектива, построенного окуляром). В правильно настроенном телескопе весь свет, собранный объективом, попадает в зрачок наблюдателя. При этом выигрыш пропорционален квадрату отношения диаметров объектива и зрачка. Для крупных телескопов эта величина составляет десятки тысяч раз. Так решается одна из основных задач телескопа – собрать больше света от наблюдаемых объектов. Если речь идет о фотографическом телескопе – астрографе, то в нем увеличивается освещенность фотопластинки.

Вторая задача телескопа – увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива F и окуляра f.

Важнейшими характеристиками телескопа (помимо его оптической схемы, диаметра объектива и фокусного расстояния) являются проницающая сила, разрешающая способность, относительное отверстие и угловое увеличение.

Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:

m = 2,1 + 5 lgD,
где D – диаметр объектива в миллиметрах.

Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно. Если невооруженным глазом можно различить две звезды с угловым расстоянием не менее 2", то телескоп позволяет уменьшить этот предел в Γ раз. Ограничение на предельное увеличение накладывает явление дифракции – огибание световыми волнами краев объектива. Из-за дифракции вместо изображения точки получаются кольца. Угловой размер центрального пятна (теоретическое угловое разрешение)

Разрешающая способность может вычисляться по формуле:

где δ – разрешение в секундах, D – диаметр объектива в миллиметрах.

Для видимых длин волн при λ = 550 нм на телескопе с диаметром D = 1 м теоретическое угловое разрешение будет равно δ = 0,1". Практически угловое разрешение больших телескопов ограничивается атмосферным дрожанием. При фотографических наблюдениях разрешающая способность всегда ограничена земной атмосферой и погрешностями гидирования и не бывает лучше 0,3". При наблюдениях глазом из-за того, что можно попытаться поймать момент, когда атмосфера относительно спокойна (достаточно нескольких секунд), разрешающая способность у телескопов с диаметром D, большим 2 м, может быть близка к теоретической. Хорошим считается телескоп, собирающий более 50 % излучения в кружке 0,5".

Относительное отверстие – отношения диаметра D к фокусному расстоянию F:

У телескопов для визуальных наблюдений типичное значение относительного отверстия 1/10 и меньше. У современных телескопов она равна 1/4 и больше.

Часто вместо относительного отверстия используется понятие светосилы, равной (D/F)2. Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.

Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:

В фотографии эта величина часто называется диафрагмой.

Угловое увеличение (или просто увеличение) показывает, во сколько раз угол, под которым виден объект при наблюдении в телескоп, больше, чем при наблюдении глазом. Увеличение равно отношению фокусных расстояний объектива и окуляра:

В наши дни наука шагнула далеко вперед. Оптические телескопы сменились инфрокрасными и радиотелескопами. Но наука на этом не останавливается и уже через несколько лет, я уверена, создадут совершенно новые по технологии телескопы. Тем более, что разработки такого телескопа уже ведутся.

1. Л. Л. Сикорук. Телескопы для любителей астрономии. М., «Наука», 1990.

2 . Элементарный учебник физики под редакцией академика Г. С. Ландсберга. Том III. М., «Наука», 1971.

3 . Телескопы БСЭ, т.25, стр.399.

4 . Астрограф БСЭ, т.2, стр.340-3415.

5 . Монтировка телескопа. БСЭ, т.16, стр.549-550.

6 . Шмидта телескоп. БСЭЭ, т.29, стр.445.

7 . Максутова телескоп. БСЭ, т.15, стр. 258.

Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение.

Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.

Конструкцию телескопа Галилея вскоре улучшил Кеплер

Конструкцию телескопа Галилея вскоре улучшил Кеплер, предложив оптическую схему, используемую по сей день. В «кеплеровском» телескопе большая объективная линза дает изображение небесного объекта на большом расстоянии от объектива. Детали этого изображения рассматривают с помощью увеличивающей выпуклой окулярной линзы.
Качество изображения первых телескопов было плохим. Простые линзы отягощены цветовыми ошибками (хроматическая аберрация), вызванными тем, что световые лучи разного цвета не фокусируются в одной точке, поэтому изображение звезды получается размытым пятнышком, окруженным цветными разводами. В определенной степени линза действует как призма.

Изобретение ахроматических объективов в XVIII веке намного улучшило изображения

Изобретение ахроматических объективов в XVIII веке намного улучшило изображения. Прежде для этого были вынуждены сооружать очень длинные телескопы. Когда отношение диаметра объективной линзы и ее фокусного расстояния мало, лучи света лишь слегка преломляются, цветовая погрешность меньше, а изображение резче. На рис. показаны такие длинные телескопы Парижской обсерватории.
Христиан Гюйгенс тоже строил телескопы, самый большой из которых имел в длину 37 м. Невозможно было сделать такую гигантскую сплошную трубу, поэтому объективная линза устанавливалась на верхушке шеста или на коньке кровли, а управляли ее положением с помощью длинной веревки, стоя на земле и удерживая окуляр перед глазом. Судя по всему, очень неудобно было работать с таким инструментом, следя за вращающимся звездным небом. Тем не менее при помощи этих инструментов получали интересные наблюдательные данные. Например, Гюйгенс обнаружил, что странные отростки у Сатурна, замеченные Галилеем, в действительности являются тонким плоским диском вокруг планеты в ее экваториальной плоскости.

Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий

Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий (16111687), имевший собственную обсерваторию в Гданьске. Это была первая в мире обсерватория, оснащенная телескопом. Наблюдениями занималась и его жена Елизавета. Инструмент Гевелия имел 45 м в длину! Его сложная система канатов и реек напоминала оснащение парусного судна и для управления определенно нуждалась в сноровке моряка. С помощью этого телескопа Гевелий исследовал поверхность Луны и составил ее хорошие карты. Когда мы говорим о лунных «морях», следует помнить, что так их назвал Гевелий. Теперь мы знаем, что это низины, наполненные застывшей лавой.
После изобретения в XVIII веке ахроматических линзовых телескопов, в изображении которых цветные разводы сильно ослаблены, эра длинных линзовых телескопов завершилась. До конца ХГХ века еще строили крупные линзовые телескопы с объективами диаметром вплоть до 1 метра, но уже были разработаны телескопы другого типа, которые постепенно стали основными инструментами современных исследований. В 1671 году Исаак Ньютон построил первый рефлектор, где не линза, как в рефракторе, а вогнутое зеркало собирало свет.

Опыты с преломлением лучей в стеклянной призме привели Ньютона к выводу, что цветовые ошибки телескоповрефракторов полностью устранить невозможно. Это заставило его обратиться к альтернативному способу фокусировки световых лучей путем отражения, угол которого не зависит от цвета. Изображение, сформированное в фокусе зеркала, не имеет цветных разводов. Если поверхность вогнутого зеркала параболическая, то все лучи, отраженные как от центральной части зеркала, так и от его краев, будут собираться в один фокус. Сохранился телескоп, собственноручно изготовленный Ньютоном. Его металлическое зеркало имеет диаметр 3,5 см. Ньютон использовал маленькое плоское зеркало для отклонения лучей вбок, в дырочку на трубе телескопа, где расположен увеличивающий окуляр.

Большие современные телескопы рефлекторы часто имеют отверстие в центре главного зеркала


Большие современные телескопы рефлекторы часто имеют отверстие в центре главного зеркала, сквозь которое лучи, отраженные от вторичного зеркала, попадают на детектор излучения. Сегодня изображение регистрируют уже не глазом или фотопластинкой, а высокочувствительной ПЗС камерой или спектрографом. Телескоп описанного типа называется кассегреновским рефлектором, поскольку его изобрел француз Г. Кассегрен (о котором очень мало известно) вскоре после создания рефлектора Ньютона. Впрочем, телескоп Кассегрена, на самом деле, был усовершенствованной версией телескопа, предложенного Джеймсом Грегори еще до Ньютона. Но Грегори не построил свой телескоп. В телескопе Кассегрена в качестве вторичного используют выпуклое зеркало; это приводит к уменьшению длины телескопа.

Важное преимущество телескопа рефлектора

Важное преимущество телескопа рефлектора состоит в том, что размер главного зеркала можно сделать гораздо больше, чем у линзы рефрактора. При этом собирается больше света и можно наблюдать более тусклые и далекие объекты. Зеркало можно поддерживать сзади по всей поверхности, в то время как линзу можно держать только по краям. После разработки методов нанесения серебра, а затем и алюминирования, вместо использовавшегося Ньютоном металла, стали применять стекло, которому даже не нужно быть прозрачным. Вообще свободный от хроматической аберрации рефлектор большого диаметра можно построить за те же деньги, что и рефрактор меньшего размера.
Хотя рефлекторы в астрономии начали успешно конкурировать с рефракторами еще в XIX веке, оставалось много задач, при решении которых предпочтение отдавалось рефракторам. Например, их использовали для точного определения положений звезд. Большие проблемы создавало наличие хроматической аберрации, но в конце концов ее удалось устранить. Это позволило осуществить мечту об измерениях расстояний до звезд.

Сегодня телескопы усложнились еще больше

Сегодня телескопы усложнились еще больше. Наряду с работой в визуальной области, они могут работать в рентгеновском, ультрафиолетовом, радио и инфракрасном диапазонах, недоступных человеческому глазу. Некоторые телескопы работают в космосе, и им не мешает атмосфера, размывающая оптическое изображение и поглощающая излучение на многих длинах волн (исключая визуальный свет и радиоволны). На рис. 7.5 представлено большое зеркало, предназначенное для космического телескопа. Для радиотелескопов вместо зеркала используют вогнутую тарелку, а радиоприемник устанавливают в фокусе этой тарелки.

Большая длина радиоволн делает их разрешение ниже, чем у оптического телескопа того же размера, поэтому тарелка радиотелескопа очень крупная. Бывают тарелки диаметром 100 м и даже больше, тогда как диаметр зеркала современного оптического телескопа не превышает 10 м. Радиоастрономы научились объединять сигналы с разных тарелок, имитируя одну тарелку, сравнимую с размером Земли. Это называется интерферометрией. Уровень современной электроники позволяет сделать то же самое и в оптическом диапазоне, используя несколько телескопов одной обсерватории.
Наконец, некоторые современные телескопы стали трудноузнаваемыми. Разработаны приборы, способные регистрировать субатомное нейтринное излучение Солнца и сверхновых звезд. Созданы детекторы гравитационных волн для обнаружения изменений полей при орбитальном движении черных дыр или их рождение в сверхновых.
Исследовательский дух очень силен в астрономии. Велико желание продвигаться все глубже и глубже в бездну Вселенной, чтобы увидеть то, чего никто никогда ранее не видел. Для обнаружения и дальнейшего исследования всех этих неожиданных небесных тел и явлений требуются телескопы все большего и большего размера.

Первый телескоп видео

Развитие астрономии не прекращается и много новых телескопов строятся по всему миру для различных целей. Краткое описание самых примечательных проектов в этом обзоре:

Поиск планет

Современные телескопы способны найти планету у другой звезды только если она очень близко к звезде или очень велика (глядя на аналог солнечной системы «Кеплер» нашел бы только Сатурн и Юпитер). Чтобы находить аналоги земли у других звезд и узнать, что с ними стало, создается новое поколение космических и наземных телескопов.

Телескоп TESS будет запущен в 2017. Его задача - искать экзопланеты при благоприятном исходе он найдет 10000 новых экзопланет в 2 раза больше чем обнаружено на сегодняшний день.


Запускаемый в 2017 космический телескоп CHEOPS будет искать экзопланеты у ближайших к солнечной системе звезд и изучать их.


Телескоп Джеймса Вебба это преемник Хаббла и будущее астрономии. Он первым сможет находить планеты размером с Землю и меньше, а также делать фотографии ещё более далеких туманностей. Постройка телескопа обошлась в $8 млрд. Он будет отправлен в космос осенью 2018 года.


Тридцатиметровый телескоп мог бы быть первым из серии «экстремально больших телескопов» способных видеть значительно дальше существующих телескопов, но для жителей гавайских островов, гора, на которой его строят - священна, и они добились его отмены. Так что теперь он будет отложен и в лучшем случае построен в другом месте.


Chapter 4

Наземный Гигантский Магелланов телескоп будет иметь разрешающую способность в 10 раз выше чем у Хаббла. Полностью функциональным он станет в 2024.


Но самый большим в мире телескопом будет European Extremely Large Telescope (E-ELT). В лучшем случае, он даже будет способен визуально наблюдать экзопланеты, так что мы сможем впервые увидеть планеты у других звезд. Начало работы также - 2024.


Телескоп PLATO будет наследником уже Джеймса Вебба и запущен в 2020е. Основной его задачей, как и остальных будет нахождение и изучение экзопланет и он сможет определять их строение (твердые они или газовые гиганты)


Также планируемый на 2020е телескоп Wfirst будет специализироваться на поисках далеких галактик, но также сможет находить экзопланеты и передавать изображение самых больших из них.


Китайский телескоп STEP (Search for Terrestrial Exo Planets) будет способен обнаруживать похожие на землю планеты на расстоянии до 20 парсеков от солнца. Его запуск ожидается в период 2021-2024.

Планируемый на второю половину 2020х космический телескоп NASA - ATLAST будет искать в галактике биомаркеры свидетельствующие о наличии жизни (кислорода, озона, воды)


Lockheed Martin разрабатывает новый телескоп - SPIDER. Он должен собирать свет иным способом и это позволит сделать эффективный телескоп меньшего размера, потому что, если посмотреть на предыдущие проекты, они становятся всё более гигантскими.


А пока новые телескопы для поиска экзопланет ещё не запущены и не построены, всё что у нас есть на сегодня это 3 наблюдательных проекта. Подробнее о них в таблице поиска планет:

Таблица поиска планет



В 2013 телескоп «Кеплер» - самый эффективный в поиске экзопланет телескоп вышел из строя, и многие издания написали для него что-то вроде некролога. Но после запуска миссии K2 в 2014 оказалось, что телескоп ещё вполне способен находить планеты. С апреля 2016 он начнет новые наблюдения, и исследователи рассчитывают найти от 80 до 120 новых экзопланет.


Очень дешевый по сравнению с аналогами, телескоп Гарвардского университета - Менерва в декабре 2015 приступил к своей миссии по поиску экзопланет у красных карликов, по соседству с солнечной системой. Астрономы рассчитывают найти не менее 10-20 планет.


Никак не понятно вращается вокруг звезды Альфа-центавра (ближайшего соседа солнечной системы) планета или нет. Эта загадка не отпускает астрономов и часть из них организовала проект Pale red dot для тщательного наблюдения и выяснения этого вопроса (если планета есть, то на ней все равно температура 1000 градусов). Наблюдения уже завершены, результаты в виде научной статьи будут в конце 2016го.

Планета 9 (или планета X) внезапно была обнаружена косвенными методами в начале 2016го. Первая новая планета солнечной системы за более чем 150 лет, но, чтобы наблюдать её в телескоп и тем самым подтвердить её существование может понадобиться до 5 лет поисков.


Поиск звезд

В галактике млечный путь от 200 до 400 млрд. звезд и астрономы пытаются создать карту или каталог хотя бы ближайших к нам звезд.

Космический телескоп GAIA составит карту 1 млрд. ближайших к нам звезд. Публикация первого каталога запланирована на лето 2016.


Японский проект JASMINE - это третий в истории астрометрический проект (GAIA - второй) и включает в себя запуск 3 телескопов в 2017, 2020 и после 2020 для уточнения расстояния до астрономических объектов и также нанесения расположения звезд на карту.

Наземный телескоп LSST будет использоваться для картографирования Млечного Пути и составления новейшей интерактивной карты звёздного неба. Он начнет работу примерно в 2022 году.

На сегодняшний день у нас есть только вот такая звездная карта от Google .

Поиск пришельцев

Если внеземная цивилизация в нашей галактике изобрела радио, то мы её когда-нибудь найдем.

Российский миллиардер и создатель mail.ru Юрий Мильнер вложил в 2015 году $100 млн в новый проект по поиску внеземных цивилизаций. Поиск будет осуществляться на текущем оборудовании.


Китай строит самый большой в мире радиотелескоп FAST площадью в 30 футбольных полей и даже выселил жителей этой местности, чтобы его возвести. Радиотелескопы решают научные задачи, но, наиболее интересный способ их применения, это попытки засечь радиосигналы разумной жизни. Телескоп был достроен в 2016 и первые исследования будут проведены уже в сентябре.


Строящийся в Австралии, Южной Африке и Новой Зеландии радиоинтерферометр Square Kilometre Array будет в 50 раз чувствительнее любого радиотелескопа и настолько чувствителен, что сможет засечь радар аэропорта за десятки световых лет от земли. Выход на полную мощность ожидается в 2024 году. Он также сможет разрешить научную загадку о том, откуда берутся короткие радиовсплески и найдет множество новых галактик


KIC8462852 самая загадочная звезда на сегодняшний день. Что-то огромное заслоняет её свет. Больше чем юпитер в 22 раза и это не другая звезда. Более того она показывает аномальные колебания яркости. Астрономы очень сильно заинтригованы. ()


Не прекращаются споры о том стоит ли отправлять сообщения к звездам или только слушать. С одной стороны, никто нас не найдет если только слушать, с другой получатели сообщений могут быть враждебны. Несколько сообщений уже было отправлено в 20 веке, но сейчас их отправлять перестали.

Поиск астероидов

Никто всерьёз не занимался защитой планеты от астероидов до недавнего времени

С нарастанием беспокойства по поводу астероидов после челябинского метеорита, бюджет НАСА на обнаружение астероидов вырос в 10 раз до $50 млн. в 2016 году.


LSST будет не только составлять карту звездного неба, но и искать «малые объекты солнечной системы». Его возможности по нахождению астероидов, должны будут быть в разы выше чем у современных наземных и космических телескопов.

Космический инфракрасный телескоп Neocam - один из 5 претендентов на новую миссию программы Discovery от NASA. Если именно эта миссия будет отобрана для реализации в сентябре 2016 (а она имеет наибольшую поддержку) телескоп будет запущен в 2021 году. Вместе с LSST он позволит Наса осуществить поставленную задачу по нахождению 90% астероидов больше 140 м.


Первый в России телескоп для обнаружения опасных астероидов - АЗТ-33 ВМ был достроен в 2016. Для него ещё нужно закупить оборудование за 500 млн. рублей, и тогда он будет способен обнаружить астероид размером с тунгусский метеорит за месяц до столкновения с землей.


Бесполезно наблюдать за опасными астероидами если не удастся изменить их курс. Поэтому NASA и ESA собираются запустить миссию AIDA по столкновению специального зонда и астероида «65803 Didymos» и тестированию таким образом возможности изменения курса астероида. Запуск ожидается в 2020, а столкновение в 2022.

Astronomy dream projects

Астрономы очень хотели бы осуществить эти проекты, но пока не могут из-за недостатка финансирования, технологий или внутреннего единства

Из-за разногласий между астрономами строиться 3 больших телескопа вместо одного гигантского 100 метрового телескопа. Тем не менее астрономы сходятся в мнении что в ближайшие 30 лет стометровый телескоп нужно будет построить.

Миссия New Worlds заключается в том, чтобы заслонить свет звезды чтобы увидеть экзопланеты рядом с ней. Для этого придется запустить в космос коронограф в сочетании с телескопом. Детали миссии всё ещё обсуждаются, но она обойдется не менее чем в $1 млрд.

Космические телескопы недостаточно большие, а наземным обсерваториям мешает атмосфера. Поэтому астрономы очень хотели бы построить обсерваторию на луне где нет атмосферы и шума (искажений из-за земных источников). Это было бы идеальное место для наблюдений, но на осуществление такого проекта уйдут десятилетия. Тем не менее небольшие телескопы уже отправляются на луну вместе с луноходами Добавить метки

Галактики имеют все виды форм. Но в прошлом формы галактик были более разнообразными и «специфическими», чем теперь. Со временем, по данным нового исследования, галактики имеют тенденцию превращаться в спирали. «Шесть миллиардов лет назад было намного больше разнообразных галактик, чем теперь - это очень удивительный результат», — сказал Родни Дельгадо-Серрано (Rodney Delgado-Serrano), главный автор новой публикации. «Это означает, что за прошлые шесть миллиардов лет, эти специфические галактики, должно быть, стали нормальными спиралями…»

Используя данные от Космического телескопа Hubble и Sloan Digital Sky Survey, команда астрономов создала первую демографическую перепись типов галактик в двух различных точках истории Вселенной, собрав для этого две хаббловских последовательности из разных Эр, которые помогли объяснить, как формируются галактики. Результаты показали, что последовательность Хаббла шесть миллиардов лет назад очень отличалась от той, которую астрономы видят сегодня.

Это изображение создано из данных полученных от NASA/ESA Hubble Space Telescope и Sloan Digital Sky Survey и демонстрирует, что хаббловская последовательность 6 млрд. лет назад очень отличалась от той, которую видят астрономы сегодня. Источник: NASA, ESA, Sloan Digital Sky Survey, R. Delgado-Serrano and F. Hammer (Observatoire de Paris)

Изображение с большим разрешением доступно . Верхнее изображение представляет текущую - или локальную - Вселенную, а нижнее изображение представляет нам отдаленные галактики (шесть миллиардов лет назад), показывая намного внушительные фрагменты специфических галактик. При осуществлении выборки 116 локальных и 148 отдаленных галактик, исследователи обнаружили, что у более чем половины современных спиральных галактик были так называемые специфические формы 6 миллиардов лет назад.

Эдвин Хаббл (Edwin Hubble) изобрел Последовательность Хаббла, иногда называемую диаграммой камертона Хаблла. Диаграмма делит галактики на три больших класса, по их основным формам: спиральные галактики, галактики с перемычкой (баром) и эллиптические галактики.

«Наша цель состояла в том, чтобы найти сценарий, который соединит текущую фотографию Вселенной с морфологией отдаленных, старших галактик - т.е. найти правильную подгонку этих пазлов галактической эволюции», — сказал Франсуа Хаммер (François Hammer) из Обсерватории де Пари, который возглавлял команду астрономов.

Астрономы считают, что эти своеобразные галактики стали спиралями через столкновения и слияние. Это противоречит широко распространенному мнению, что галактики - результат слияния в ходе формирования эллиптических галактик, но Хаммер и его команда предлагают гипотезу «спирального восстановления», которая предполагает, что галактики, пострадавшие от богатых газом слияний, медленно возрождаются как гигантские спирали с дисковой и центральной бульбой.