24 в чем состоит явление самоиндукции. Явление самоиндукции индуктивность. где коэффициент пропорциональности L называется индуктивностью контура

До сих пор мы рассматривали изменяющиеся магнитные поля, не обращая внимание на то, что является их источником. На практике чаще всего магнитные поля создаются с помощью различного рода соленоидов, т.е. многовитковых контуров с током.

Здесь возможны два случая: при изменении тока в контуре изменяется магнитный поток, пронизывающий: а) этот же контур; б) соседний контур.

ЭДС индукции, возникающая в самом же контуре, называется ЭДС самоиндукции , а само явление – самоиндукция.

Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении взаимной индукции .

Ясно, что природа явления одна и та же, а разные названия использованы для того, чтобы подчеркнуть место возникновения ЭДС индукции .

Явление самоиндукции открыл американский ученый Дж. Генри.

Генри Джозеф (1797–1878) – американский физик, член Национальной АН, ее президент (1866–1878).Работы посвящены электромагнетизму. Первый сконструировал мощные подковообразные электромагниты (1828), применив многослойные обмотки из изолированной проволоки (грузоподъемность их достигала одной тонны), открыл в 1831 г. принцип электромагнитной индукции (М. Фарадей первый опубликовал открытие индукции). Построил электрический двигатель (1831), обнаружил (1832) явление самоиндукции и экстратоки, установил причины, влияющие на индуктивность цепи. Изобрел электромагнитное реле. Построил телеграф, действовавший на территории Принстонского колледжа, установил в 1842 г. колебательный характер разряда конденсатора.

Явление самоиндукции можно определить следующим образом.

Ток I, текущий в любом контуре, создает магнитный поток Ф, пронизывающий этот же контур. При изменении I будет изменяться Ф. Следовательно, в контуре будет наводиться ЭДС индукции.

Т.к. магнитная индукция В пропорциональна току I следовательно

где L – коэффициент пропорциональности, названный индуктивностью контура.

Если внутри контура нет ферромагнетиков, то (т.к. ).

Индуктивность контура L зависит от геометрии контура, числа витков, площади витка контура.

За единицу индуктивности в СИ принимается индуктивность такого контура, у которого при токе возникает полный поток . Эта единица называется Генри (Гн) .

Размерность индуктивности:

Вычислим индуктивность соленоида L. Если длина соленоида l гораздо больше его диаметра d ( ) , то к нему можно применить формулы для бесконечно длинного соленоида. Тогда

здесь N – число витков. Поток через каждый из витков

Потокосцепление

Но мы знаем, что , откуда индуктивность соленоида

где n – число витков на единицу длины, т.е. – объем соленоида, значит

, (5.1.1)

Из этой формулы можно найти размерность для магнитной постоянной:

При изменении тока в контуре возникает ЭДС самоиндукции, равная :

, (5.1.2)

Знак минус в этой формуле обусловлен правилом Ленца.

Явление самоиндукции играет важную роль в электротехнике и радиотехнике. Как мы увидим дальше, благодаря самоиндукции происходит перезарядка конденсатора, соединенного последовательно с катушкой индуктивности, в результате в такой LC -цепочке (колебательном контуре) возникают электромагнитные колебания.

Мы уже изучили, что около проводника с током возникает магнитное поле. А также изучили, что переменное магнитное поле порождает ток (явление электромагнитной индукции). Рассмотрим электрическую цепь. При изменении силы тока в этой цепи произойдет изменение магнитного поля, в результате чего в этой же цепи возникнет дополнительный индукционный ток . Такое явление называется самоиндукцией , а ток, возникающий при этом, называется током самоиндукции .

Явление самоиндукции - это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

ЭДС самоиндукции определяется по формуле:

Явление самоиндукции подобно явлению инерции . Так же, как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет явления самоиндукции. Если в цепь, состоящую из двух параллельно подключенных к источнику тока одинаковых ламп, последовательно со второй лампой включить катушку, то при замыкании цепи первая лампа загорается практически сразу, а вторая с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки очень часто перегорают при выключении света.

Энергия магнитного поля

Энергия магнитного поля контура с током.

  • Индуктивность

Индуктивность

  • Ток I , текущий в замкнутом контуре, вокруг себя создает магнитное поле B .

  • Ф ~ I .

  • где коэффициент пропорциональности L называется индуктивностью контура .

Явление самоиндукции

  • При изменении тока I в контуре изменяется создаваемое им магнитное поле. Следовательно, в контуре индуцируется э.д.с.

  • Этот процесс называется самоиндукцией .

  • В системе СИ индуктивность измеряется в генри: [L ] = Гн = Вб/А = В·с/А.

Явление самоиндукции

  • Э.д.с. индукции Ei создается внешним магнитным полем.

  • Э.д.с. самоиндукции ES создается при изменении собственного магнитного поля.

  • В общем случае индуктивность контура L зависит от

  • 1) геометрической формы контура и его размеров,

  • 2) магнитной проницаемости среды, в которой находится контур.

  • В электростатике аналогом индуктивности является электроемкость С уединенного проводника, которая зависит от формы, размеров, диэлектрической проницаемости ε среды.

  • L = const , если магнитная проницаемость μ среды и геометрические размеры контура постоянны.

Закон Фарадея для самоиндукции

  • Знак минус в законе Фарадея в соответствии с правилом Ленца означает, что наличие индуктивности L приводит к замедлению изменения тока I в контуре.

Если ток I возрастает, то dI / dt > 0 и, соответственно, ES < 0, т.е. ток самоиндукции IS направлен навстречу току I

  • Если ток I возрастает, то dI / dt > 0 и, соответственно, ES < 0, т.е. ток самоиндукции IS направлен навстречу току I внешнего источника и замедляет его нарастание.

  • Если ток I убывает, то dI / dt < 0 и, соответственно, ES > 0, т.е. ток самоиндукции IS имеет то же направление, что и убывающий ток I внешнего источника и замедляет его убывание.

^ Закон Фарадея для самоиндукции

  • Если контур обладает определенной индуктивностью L , то любое изменение тока I тормозится тем сильнее, чем больше L контура, т.е. контур обладает электрической инертностью .

Индуктивность соленоида

  • Индуктивность L зависит только от геометрических размеров контура и магнитной проницаемости μ среды.

  • ФN – поток магнитной индукции через N витков,

  • Ф = BS - магнитный поток сквозь площадку S , ограниченную одним витком.

Индуктивность соленоида

  • Поле соленоида:

  • l – длина соленоида,

  • n = N / l – число витков на единицу длины соленоида.

  • (2) (1):

  • По правилу Ленца при включении и выключении тока в цепи, содержащей индуктивность L , возникает ток самоиндукции IS , который направлен так, чтобы препятствовать изменению тока I в цепи.

Экстратоки размыкания

  • Ключ К в положении 1 :

  • Ключ К в положении 2 (размыкание цепи) :

  • Возникает ES и обусловленный ею ток

Экстратоки размыкания

  • постоянная, называемая временем релаксации – время, в течение которого сила тока I уменьшается в е раз.

  • Чем больше L , тем больше τ , и тем медленнее уменьшается ток I .

Экстратоки замыкания

  • При замыкании цепи помимо внешней э.д.с. E возникает э.д.с. самоиндукции ES .

Экстратоки замыкания

  • В момент замыкания t = 0 сила тока I = 0, переменная a 0 = – I 0, в момент времени t сила тока I , переменная a = I I 0

Экстратоки замыкания

  • I 0 – установившийся ток.

  • Установление тока происходит тем быстрее, чем меньше L цепи и больше её сопротивление R

Экстратоки замыкания и размыкания

  • Поскольку сопротивление батареи r обычно мало, то можно считать, что R R 0, где

  • R 0 – сопротивление цепи без учета сопротивления источника ЭДС. Установившийся ток

R 0 до R .

  • ● Мгновенное увеличение сопротивления цепи от R 0 до R .

  • Установившийся ток был

  • При отключении источника э.д.с.

  • (размыкание цепи) ток изменяется по закону

  • Величина э.д.с. самоиндукции

R R >> R 0), то ES

  • Если цепь переключается на очень большое внешнее сопротивление R , например, происходит разрыв цепи (R >> R 0), то ES может стать огромным и образуется вольтова дуга между разомкнутыми концами выключателя.

э.д.с. самоиндукции

  • В цепи, обладающей большой индуктивностью, ES может оказаться больше э.д.с. источника E, включенного в цепь, что может привести к пробою изоляции и выходу из строя оборудования.

  • Поэтому сопротивление в контур надо вносить постепенно, уменьшая величину отношения dI /dt .

Взаимная индукция

  • Магнитный поток, образованный контуром 1, пронизывает контур 2:

  • L 21 – коэффициент пропорциональности.

  • Если I 1 изменяется, то в контуре 2 индуцируется э.д.с.

Взаимная индукция

  • Аналогично, если в контуре 2 изменяется I 2, то в первом контуре изменение магнитного потока индуцирует э.д.с.:

Коэффициенты L 12 = L 21 – взаимная индуктивность контуров зависит от

  • 1. геометрической формы,

  • 2. размеров,

  • 3. взаимного расположения,

  • 4. магнитной проницаемости среды μ .

Для двух катушек на общем тороидальном сердечнике

  • N 1, N 2 – число витков первого и второго контура, соответствен,

  • l – длина сердечника (тороида) по средней линии,

  • S – сечение сердечника.

Трансформатор – устройство, состоящее из двух и более катушек, намотанных на один общий сердечник.

  • Служат для повышения или понижения напряжения переменного тока:

  • коэффициент трансформации.

  • Конструктивно трансформаторы выполняют так, что магнитное поле почти полностью сосредоточено в сердечнике.

  • В большинстве трансформаторов вторичная обмотка наматывается поверх первичной обмотки.

Автотрансформатор – трансформатор, состоящий из одной обмотки.

  • Повышающий:

  • 1-2 U подводится, 1-3 U снимается.

  • Понижающий:

  • 1-3 U подводится, 1-2 U снимается.

Скин–эффект

  • При прохождении переменного тока по проводнику внутри проводника магнитное поле изменяется. Изменяющееся во времени магнитное поле порождает в проводнике вихревые токи самоиндукции .

Скин–эффект

  • Плоскости вихревых токов проходят через ось проводника.

  • По правилу Ленца, вихревые токи препятствуют изменению основного тока внутри проводника и способствуют его изменению вблизи поверхности.

  • Для переменного тока сопротивление внутри проводника больше сопротивления на поверхности R внутри > R поверх.

Скин–эффект

  • Плотность переменного тока неодинакова по сечению:

  • jmax на поверхности, jmin внутри на оси.

  • Это явление называется скин–эффектом .

Следствие скин–эффекта

  • ВЧ токи текут по тонкому поверхностному слою, поэтому проводники для них делают полыми, а часть внешней поверхности покрывают серебром.

Применение:

  • метод поверхностной закалки металлов, у которых при нагреве токами высокой частоты (ТВЧ) происходит разогрев только поверхностного слоя.

Энергия магнитного поля. Объемная плотность энергии магнитного поля

  • Энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.

  • Работа, обусловленная индукционными явлениями

Энергия магнитного поля

  • Работа dA затрачивается на изменение магнитного потока на величину .

  • Работа по созданию магнитного потока Ф :

Объемная плотность энергии магнитного поля

  • Найдем ω на пример соленоида

Термин индукция в электротехнике означает возникновение тока в электрической замкнутой цепи, если она находится в изменяющемся Открыта всего-то двести лет назад Майклом Фарадеем. Значительно раньше это мог бы сделать Андре Ампер, проводивший похожие опыты. Он вставлял в катушку металлический стержень, а затем, вот незадача, шел в другую комнату посмотреть на стрелку гальванометра - а вдруг она шевельнется. А стрелка исправно делала свое дело - отклонялась, но пока Ампер странствовал по комнатам - возвращалась на нулевую отметку. Вот так явление самоиндукции дожидалось еще добрый десяток лет, пока катушка, прибор и исследователь окажутся одновременно в нужном месте.

Главным моментом этого эксперимента было то, что ЭДС индукции возникает только тогда, когда магнитное поле, проходящее через замкнутый контур, изменяется. А вот менять его можно как угодно - или изменять величину самого магнитного поля, или просто перемещать источник поля относительно того же замкнутого контура. ЭДС, которая при этом возникает, назвали “ЭДС взаимоиндукции”. Но это было только начало открытий в области индукции. Еще более удивительным было явление самоиндукции, которое открыл примерно в то же время. В его опытах было обнаружено, что катушки не только индуцировало ток в другой катушке, но и при изменении тока в этой катушке, наводило в ней же дополнительную ЭДС. Вот ее-то и назвали ЭДС самоиндукции. В большое интерес представляет направление тока. Оказалось, что в случае с ЭДС самоиндукции ее ток направлен против своего “родителя” - тока, обусловленного основной ЭДС.

А можно наблюдать явление самоиндукции? Как говорится, нет ничего проще. Соберем две первая - последовательно включенная катушка индуктивности и лампочка, а вторая - только лампочка. Подключим их к аккумулятору через общий выключатель. При включении можно видеть, что лампочка в цепи с катушкой загорается “нехотя”, а вторая лампочка, более быстрая “на подъем”, включается мгновенно. Что происходит? В обеих цепях после включения начинает протекать ток, причем он изменяется от нуля до своего максимума, а как раз изменения тока и дожидается катушка индуктивности, которая порождает ЭДС самоиндукции. Есть ЭДС и замкнутая цепь - значит, есть и ее ток, но направлен он противоположно основному току цепи, который, в конце концов, достигнет максимального значения, определяемого параметрами цепи, и перестанет расти, а раз нет изменения тока - нет и ЭДС самоиндукции. Все просто. Аналогичная картина, но с “точностью до наоборот”, наблюдается при выключении тока. Верная своей “вредной привычке” противодействовать любому изменению тока, ЭДС самоиндукции поддерживает его протекание в цепи после отключения питания.

Сразу же стал вопрос - в чем заключается явление самоиндукции? Было установлено, что на ЭДС самоиндукции влияет скорость изменения тока в проводнике, и можно записать:

Отсюда видно, что ЭДС самоиндукции Е прямопропорциональна скорости изменения тока dI/dt и коэффициенту пропорциональности L, названному индуктивностью. За свой вклад в исследование вопроса, в чем состоит явление самоиндукции, Джордж Генри был вознагражден тем, что его имя носит единица измерения индуктивности — генри (Гн). Именно индуктивность цепи протекания тока определяет явление самоиндукции. Можно представить, что индуктивность - это некое “хранилище” магнитной энергии. В случае увеличения тока в цепи электрическая энергия преобразуется в магнитную, задерживает рост тока, а при уменьшении тока магнитная энергия катушки преобразуется в электрическую и поддерживает ток в цепи.

Наверное, каждому приходилось видеть искру при выключении вилки из розетки - это самый распространенный вариант проявления ЭДС самоиндукции в реальной жизни. Но в быту размыкаются токи максимум 10-20 А, а время размыкания порядка 20 мсек. При индуктивности порядка 1 Гн ЭДС самоиндукции в этом случае будет равна 500 В. Казалось бы, что вопрос, в чем состоит явление самоиндукции, не так и сложен. А на самом деле, ЭДС самоиндукции представляет собой большую техническую проблему. Суть в том, что при разрыве цепи, когда контакты уже разошлись, самоиндукция поддерживает протекание тока, а это приводит к выгоранию контактов, т.к. в технике коммутируются цепи с токами в сотни и даже тысячи ампер. Здесь зачастую речь идет об ЭДС самоиндукции в десятки тысяч вольт, а это требует дополнительного решения технических вопросов, связанных с перенапряжениями в электрических цепях.

Но не все так мрачно. Бывает, что эта вредная ЭДС очень даже полезна, например, в системах зажигания ДВС. Такая система состоит из катушки индуктивности в виде автотрансформатора и прерывателя. Через первичную обмотку пропускается ток, который выключается прерывателем. В результате обрыва цепи возникает ЭДС самоиндукции в сотни вольт (при этом аккумулятор дает всего 12В). Дальше это напряжение дополнительно трансформируется, и на свечи зажигания поступает импульс больше 10 кВ.

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком ) пропорционален модулю индукции В магнитного поля внутри контура \(\left(\Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left(B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left(\Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

\(\Phi = L \cdot I,\)

Где L - коэффициент пропорциональности, который называется индуктивностью контура .

  • Индуктивность контура - скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:
\(~L = \dfrac{\Phi}{I}.\)

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

\(~L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac{S}{l},\)

Где μ - магнитная проницаемость сердечника, μ 0 - магнитная постоянная, N - число витков соленоида, S - площадь витка, l - длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции . Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС - ЭДС самоиндукции E si . ЭДС самоиндукции создает в контуре ток самоиндукции I si .

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

\(E_{si} =-\dfrac{\Delta \Phi }{\Delta t}=-L\cdot \dfrac{\Delta I}{\Delta t}.\)

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (E si < 0), т.е. индукционный ток направлен в противоположную сторону тока источника. При уменьшении тока (ΔI < 0), ЭДС положительная (E si > 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

\(L=-E_{si} \cdot \dfrac{\Delta t}{\Delta I}.\)

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последовательно с катушкой L . При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции I si , который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

При размыкании ключа ток в лампе 2 также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа 2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).

Рис. 3

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.

Энергия магнитного поля

Энергия магнитного поля контура индуктивности L с силой тока I

\(~W_m = \dfrac{L \cdot I^2}{2}.\)

Так как \(~\Phi = L \cdot I\), то энергию магнитного поля тока (катушки) можно рассчитать, зная любые две величины из трех (Φ, L, I ):

\(~W_m = \dfrac{L \cdot I^2}{2} = \dfrac{\Phi \cdot I}{2}=\dfrac{\Phi^2}{2L}.\)

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля:

\(\omega_m = \dfrac{W_m}{V}.\)

*Вывод формулы

1 вывод.

Подключим к источнику тока проводящий контур с индуктивностью L . Пусть за малый промежуток времени Δt сила тока равномерно увеличится от нуля до некоторого значения I I = I ). ЭДС самоиндукции будет равна

\(E_{si} =-L \cdot \dfrac{\Delta I}{\Delta t} = -L \cdot \dfrac{I}{\Delta t}.\)

За данный промежуток время Δt через контур переносится заряд

\(\Delta q = \left\langle I \right \rangle \cdot \Delta t,\)

где \(\left \langle I \right \rangle = \dfrac{I}{2}\) - среднее значение силы тока за время Δt при равномерном его возрастании от нуля до I .

Сила тока в контуре с индуктивностью L достигает своего значения не мгновенно, а в течение некоторого конечного промежутка времени Δt . При этом в цепи возникает ЭДС самоиндукции E si , препятствующая нарастанию силы тока. Следовательно, источник тока при замыкании совершает работу против ЭДС самоиндукции, т.е.

\(A = -E_{si} \cdot \Delta q.\)

Работа, затраченная источником на создание тока в контуре (без учета тепловых потерь), и определяет энергию магнитного поля, запасаемую контуром с током. Поэтому

\(W_m = A = L \cdot \dfrac{I}{\Delta t} \cdot \dfrac{I}{2} \cdot \Delta t = \dfrac{L \cdot I^2}{2}.\)

2 вывод .

Если магнитное поле создано током, проходящим в соленоиде, то индуктивность и модуль индукции магнитного поля катушки равны

\(~L = \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S, \,\,\, ~B = \dfrac {\mu \cdot \mu_0 \cdot N \cdot I}{l}\)

\(I = \dfrac {B \cdot l}{\mu \cdot \mu_0 \cdot N}.\)

Подставив полученные выражения в формулу для энергии магнитного поля, получим

\(~W_m = \dfrac {1}{2} \cdot \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S \cdot \dfrac {B^2 \cdot l^2}{(\mu \cdot \mu_0)^2 \cdot N^2} = \dfrac {1}{2} \cdot \dfrac {B^2}{\mu \cdot \mu_0} \cdot S \cdot l.\)

Так как \(~S \cdot l = V\) - объем катушки, плотность энергии магнитного поля равна

\(\omega_m = \dfrac {B^2}{2\mu \cdot \mu_0},\)

где В - модуль индукции магнитного поля, μ - магнитная проницаемость среды, μ 0 - магнитная постоянная.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. - Мн.: Нар. асвета, 2008. - С. 183-188.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - С. 417-424.