Кариотип человека что это? Определение термина. Нормальный кариотип человека. Международная классификация хромосом человека На каких стадиях митоза проводят кариотипирование

Кариотип человека является комплексом признаков целого набора хромосом, который присущ всем клеткам человека. Изучение кариотипа - актуальная проблема для будущих родителей, которые хотят выявить вероятность хромосомных заболеваний у их ребенка. Особенно это актуально, когда у кого-либо из родственников есть синдром Дауна или синдром Патау.

Довольно часто генетический анализ проводится родителями при не вынашивании предыдущих беременностей и бесплодии. В некоторых случаях в целях исключения хромосомной патологии проводят исследование кариотипа плода. С этой же целью дополнительно проводят УЗИ ТВП, когда исследуется воротниковый участок. Его увеличенный размер, свидетельствует о наличии патологического процесса.

Что такое кариотип

Понятие о кариотипе получило распространение на этапе исследования в медицине генетических заболеваний, когда стали активно изучать строение и функции хромосом. Получили открытие синдром Эдвардса, синдром Клайнфельтера. Кариотип, представляющий собой клеточный хромосомный комплекс, является постоянным. У человека нормой является наличие хромосом, количество которых равно 46. Из них 22 пары являются аутосомами и две - это половые хромосомы.

У представительниц женского пола они обозначаются как ХХ, у представителей мужского пола - ХУ. Главная особенность хромосомного набора - это видовая специфичность кариотипа. Функции хромосом заключаются в том, что каждая из них является носительницей генов, которые отвечают на наследственность.

Нормальный мужской кариотип - это кариотип 46, ХУ. Нормальный женский кариотип выглядит как кариотип 46, ХХ. Набор хромосом остается неизменным на протяжении всей жизни. Поэтому сдать кариотип достаточно один раз в жизни.

Методы изучения кариотипа

Определение кариотипа имеет некоторые особенности. Проводится оно на одной из стадий клеточного цикла. Это связано с тем, что в процессе других стадий развития клетки, хромосомы труднодоступны для изучения.

Для процедуры кариотипирования используют любые клетки в процессе деления.

Нормальный кариотип человека изучается двумя способами:

  • с использованием одноядерных лейкоцитов, которые извлекаются из проб крови (их деление провоцируют с применением митогенов);
  • с использованием клеток, которые интенсивно делятся в нормальном состоянии, например, клетки кожи.

Суть процедуры заключается в том, что клетки фиксируются на этапе метафазы, затем подвергаются окрашиванию и фотографированию. Из комплекса сделанных снимков генетик составляет систематизированный кариотип, который по-другому называется идеограмма (кариограмма). Она представляет собой нумерованный комплекс аутосомных пар. Хромосомные изображения расположены вертикально. Короткие плечи находятся в верхней части. Присваивание номеров осуществляется по убыванию размеров. В конце располагается пара половых хромосом.

Показания для процедуры

Кариотипирование супругов - это важный этап в процессе планирования семьи и детей. Польза процедуры однозначна, даже при отсутствии явных показаний. Ведь в некоторых случаях человек может просто не знать о наличии у его дальних родственников различных наследственных патологий, среди которых распространены синдром Дауна, синдром Эдвардса, синдром Клайнфельтера. При определении кариотипа специалист выявит аномальную хромосому и подсчитает процент вероятности рождения малыша с генетическими заболеваниями, которые могут бывать разными.

Среди показаний к исследованию выделяют:

  • возрастную категорию;
  • отсутствие детей, когда причина не ясна;
  • ранее сделанные процедуры эко, закончившиеся безрезультатно;
  • наличие в анамнезе хромосомной патологии у мужчины или женщины (синдром Дауна, синдром Эдвардса, синдром Клайнфельтера);
  • гормональный дисбаланс (при исследовании кариотипа у женщины);
  • взаимодействие с различными реагентами химической природы, облучением;
  • вредные привычки будущей мамы или употребление ею некоторых лекарственных препаратов;
  • присутствие в анамнезе женщины ситуаций самопроизвольного прерывания процесса вынашивания ребенка;
  • брак между близкими родственниками;
  • рождение ребенка с наследственными болезнями.

Кариотип супружеской пары обычно исследуют до беременности. Однако возможно проведение процедуры в процессе вынашивания ребенка. Часто женщины желают исключить синдром Дауна. Структура наследственного материала может изучаться у плода. Этот анализ получил название пренатального кариотипирования.

Кроме того, вероятность развития хромосомного заболевания определяют посредством ультразвукового исследования зоны ТВП, когда изучают воротниковое пространство. Аббревиатура ТВП подразумевает толщину соответствующей области. Если его размер повышен, необходимы дополнительные исследования плода с целью подтверждения диагноза о наличии патологии.

Особенности подготовки к исследованию

Расшифровка кариотипа осуществляется генетиком. О том, как сдавать анализ, какие существуют правила подготовки, особенности самой процедуры расскажет специалист, выдающий направление. Исследование для кариотипа проводится посредством взятия клеток крови. Перед анализом, чтобы не было ошибки, необходимо исключить влияние тех факторов, которые могут изменить данные. Подготовка начинается за две недели. Изменить показатели могут следующие моменты:

  • острая форма любого заболевания или период обострения хронической болезни;
  • применение медикаментозных препаратов;
  • употребление алкогольных напитков или курение.

Особенности проведения манипуляции

Для изучения кариотипа у супругов производится забор венозной крови. В лаборатории из крови выделяют те лимфоциты, для которых актуальна фаза деления. На протяжении трех дней они изучаются. Методы исследования включают обработку клеток специальным веществом - митогеном. Его предназначение заключается в том, чтобы повысить скорость деления клетки. В ходе этого процесса лаборант может наблюдать хромосомы, однако его останавливают с помощью специального воздействия.

Структурная организация хромосомы лучше видна после окрашивания. Это позволяет увидеть особенности строения каждой хромосомы. После процедуры окрашивания анализируются выполненные мазки: определяют число и структуру.

Цитогенетическое исследование считается завершенные после того, как полученные результаты соотнесутся с нормальными показателями.

Кариотип и идиограмма - обязательные оставляющие исследования наследственного материала. Для изучения достаточно взятие не менее 12 клеток. В некоторых случаях изучают кариотип с аберрациями, когда проводят расширенное обследование 100 клеток.

Какие патологии выявляются

Кариотип у человека в норме представлен 46 хромосомами и обозначается как как 46ХХ или 46ХУ. При выявлении отклонений результат выглядит иначе. Примером может стать определение у женщины третьей лишней 21 хромосомы, что будет обозначаться как 46ХХ21+.

Изучение наследственного материала позволяет выявить следующие отклонения от нормы:

  1. Наличие третьей хромосомы в комплексе, что получило название трисомии (развивается синдром Дауна, при котором увеличен показатель ТВП). При наличии трисомии по 13 хромосоме возникает синдром Патау. При увеличении количества по 18-ой хромосоме - синдром Эдвардса. Появление лишней Х хромосомы (47 xxy или 48х xxy) в кариотипе у мужчины дает синдром Клайнфельтера (мозаичный кариотип).
  2. Уменьшение числа хромосом в кариотипе, то есть отсутствие одной хромосомы в паре - моносомия;
  3. Недостаток участка хромосомы, что называется делецией;
  4. Удвоение отдельной области хромосомы, то есть дупликация;
  5. Разворот хромосомного участка, получивший название инверсии;
  6. Перемещение хромосомных участков - транслокация;

Не всегда люди придают значение исследованиям наследственности. Своевременное проведение кариотипирования поможет оценить состояние генов до планирования детей. Кариотип для генотипа представляет внешнее оформление заложенных признаков. Процедура исследования наследственного материала помогает выявить патологию вовремя. Геном для кариотипа несет половину важной информации. Ее знание необходимо многим парам, которые страдают бесплодием, либо имеют в анамнезе детей, страдающих генетическими аномалиями.

Исследования кариотипа позволяют выявить следующие отклонения в состоянии генов:

  • мутации, являющиеся причинами тромбообразования и прерывания беременности;
  • изменения У-хромосомы;
  • изменения генов, приводящие к детоксикации, когда организм не в состоянии обезвреживать токсические агенты;
  • Изменения, приводящие к развитию муковисцидоза.

Помимо этого, в кариотипе человека заложена информация о предрасположенности к различным заболеваниям (инфаркт сердечной мышцы, сахарный диабет, гипертония). Исследование наследственного материала позволит вовремя начать профилактику данных болезней и сохранить высокое качество жизни на долгие годы.

Если выявлены отклонения

При выявлении отклонений в кариотипе (например, таких синдромов, как синдром Эдвардса, синдром Клайнфельтера) врач обязан разъяснить особенности возникшей патологии и ее влияния на вероятность рождения ребенка с различными генетическими заболеваниями. При этом генетик акцентирует внимание на неизлечимости хромосомных и генных аномалий. Решение о рождении ребенка при выявлении патологии кариотипа на этапе вынашивания принимают сами родители.

Врач только предоставляет всю необходимую информацию, рассказывая, что такое численность хромосом и постоянство их состава. Обнаружение аномалий у развивающегося плода - одно из медицинских показаний к прерыванию беременности. Однако окончательное решение принимает женщина.

К сожалению, патологии кариотипа не лечатся. Потому его своевременное определение поможет избежать множества проблем с планированием детей. Следует помнить, что генетики тоже могут ошибаться. Поэтому получив положительные результаты о наличии аномалии не следует опускать руки. Сдать анализ всегда можно повторно. Во время беременности дополнительно проводят УЗИ и исследование ТВП. Если же результаты подтвердились во второй раз, стоит подумать об альтернативных способах воспитания ребенка. Для многих они становятся способами реализации себя как родителя.

Вконтакте

Введение..................................................................................................... 1

Глава 1. Митотические хромосомы........................................................... 2

Глава 2. Мейотические хромосомы........................................................... 5

Глава 3. Цитогенетический метод............................................................ 13

Глава 4. Половой хроматин.................................................................... 20

Глава 5. Мозаицизм................................................................................. 23


Одним из ключевых вопросов генетики человека является вопрос о строении и функционировании материальных ос­нов наследственности. Сведения по каждому из трех уров­ней организации наследственных структур (генному, хро­мосомному, геномному) накапливаются в последние годы с удивительной быстротой, и можно надеяться, что недале­ко то время, когда будет составлена довольно цельная картина наследственности человека. Уже и сейчас по это­му вопросу человека можно отнести к числу наилучшим образом изученных объектов наряду с дрозофилой, мышью, кукурузой.

Для правильного понимания значения наследственно­сти в патологии человека необходимо иметь подробные сведения по трем частично взаимосвязанным разделам:

1) по морфологическому и химическому строению хромо­сом и кариотипа в целом; 2) по дискретным признакам человека, контролируемым единичными генами («инвента­ризация» единиц наследственной изменчивости); 3) по «ар­хитектонике» генов в хромосомах (сцепление генов и кар­ты хромосом). По каждому из этих разделов накоплено много данных, их интенсивная разработка продолжается как в теоретическом, так и прикладном (клиническом) ас­пектах.

Принципы и основные разделы общей цитогенетики сформировались в течение 20-х и 30-х годов в основном благодаря исследованиям, проведенным на дрозофиле и не­которых растениях. Цитогепетика человека и млекопитаю­щих, занимающая ведущее место в современой цитогенетике, развилась позже, главным образом в связи с методи­ческими трудностями.

Историю развития цитогенетики человека можно раз­делить на три периода. Первый охватывает период с прош­лого века до середины 50-х годов и имеет сейчас сугубо исторический интерес. Это были поиски методических под­ходов к получению препаратов хромосом человека заме­чательными своей настойчивостью и трудолюбием цитологами того времени (А. Г. Андрес, 1934). Хотя нашими цитогенетиками А. Г. Андресом и М. С. Навашиным были правильно описаны первые 10 пар крупных хромосом, од­нако не было достоверно установлено даже общее число хромосом в клетках человека. Неизвестной оставалась так­же их морфология.

Второй период, начало которому было положено рабо­той Tjio и Levan в 1956 г., характеризовался возникнове­нием и бурным развитием современной цитогенетики чело­века. Довольно быстро были разработаны все основные ме­тодические приемы хромосомного анализа, получены фун­даментальные сведения о кариотипе человека, об основных особенностях строения и функционирования его нормаль­ных хромосом. Именно в этот период зародилась медицин­ская цитогенетика, которая открыла новую область пато­логии человека, обусловленную изменением числа или структуры хромосом.

Третий период развития цитогенетики человека начался в 70-х годах. Его по праву можно считать началом совре­менного этапа в развитии науки о цитологических основах наследственности человека. Ряд методических нововведе­ний обеспечили переход цитогенетики на качественно иной уровень. Реализовалась возможность изучения индивиду­альности хромосом человека и даже их участков. Это сра­зу подняло на новый уровень медицинскую цитогенетику. Стало возможным исследовать комплексно морфологию, функцию, химические особенности строения и надмолеку-лярную организацию хромосом человека. Развитие в эти же годы методов генетического картирования хромосом че­ловека обеспечило решение самой сложной задачи - соз­дание генетических карт хромосом.

Таким образом, современная цитогенетика человека представляет собой богатую фактическим материалом, раз­ветвленную самостоятельную область генетики человека. В настоящее время задача идентификации всех элемен­тов человеческого кариотипа при анализе на стадии мито­за решена на основе применения дифференциальных ок­расок хромосом.

Хромосомы как индивидуаль­ные структуры становятся доступными для исследова­ния после значительного уко­рочения и утолщения, кото­рые они испытывают в период подготовки клетки к деле­нию. Для соматических клеток таким делением является митоз, для генеративных - сначала митоз, а затем мейоз.

Глава 1. Митотические хромосомы.

Основные сведения о хромо­сомном наборе человека в целом и об индивидуальных хромосомах получены в результате изучения хромосом в метафазе митоза. На этой стадии митоза отчетливо видно, что диплоидный набор хромосом человека состоит из 46 элементов: 22 пар аутосом и одной пары половых хромо­сом (XX у женщин и XY у мужчин). На стандартно окрашенных препаратах форма метафазных хромосом оп­ределяется местоположением первичной перетяжки, кото­рая формируется благодаря деконденсации функционирую­щего в метафазе центромерного района. В отдельных хро­мосомах могут существовать дополнительные перетяжки, называемые вторичными. В случае локализации такой перетяжки на конце хромосомы отделяемый ею дистальный участок хромосомы называется спутником.

По форме и общим размерам все аутосомы человека лег­ко подразделяются на 7 групп, обозначаемых латинскими буквами от А до G (рис. 8). Помимо этого, все аутосомы в порядке уменьшения общей длины нумеруются (от 1 до 22).

Длина одной и той же хромосомы в митозе значительно варьирует, поскольку и в стадии метафазы продолжается процесс естественной конденсации хромосомы, который значительно усиливается колхицином. Поэтому для идентификации служит показатель относительной, а не абсолют­ной длины хромосомы. Однако его надежность ограничива­ется тем, что хромосомы обладают разной длиной, а в дан­ной хромосоме плечи разных размеров сокращаются неодинаково: укорочение более длинных происходит быст­рее по сравнению с короткими. Это не отражается на ука­занной выше групповой характеристике, но препятствует идентификации близких по размеру и форме хромосом внутри групп. Затруднения в индивидуальной идентифика­ции хромосом усиливаются также тем, что дифференциаль­ная конденсация может иметь место и между гомологичными хромосомами, обусловливая гетероморфизм гомоло­гов. В настоящее время потребность в использовании метода морфометрии и определяемых с ее помощью линей­ных параметров хромосомы фактически отпала в связи с введением в практику хромосомного анализа дифференци­альных окрасок хромосом.

Анализ спонтанных вторичных перетяжек, включая спутничные, заметно не облегчает распознавание отдель­ных хромосом. С их помощью наиболее регулярно можно выделить аутосому 9, часто обладающую значительной пе­ретяжкой в околоцентромерном районе длинного плеча. Спутничной перетяжкой обладают все десять акроцентрических хромосом человека, aD- или G-хромосомы по это­му признаку в пределах групп не различаются.

Морфологическая однородность хромосомы по длине, как она вырисовывается при микроскопическом изучении метафазных хромосом на рутинно приготовленных и ок­рашенных препаратах, на самом деле оказывается обман­чивой. Методический прогресс в цитогенетике человека и высших эукариотов в целом, который имел место на про­тяжении последних 15-20 лет, привел к открытию глубо­кой линейной дифференцированности хромо­сомы в отношении и структуры, и функции. Эта дифференцированность, индивидуальная для каждой хромосомы, сравнительно легко выявляется в метафазе митоза. Бла­годаря этому в современной цитогенетике человека можно идентифицировать все хромосомы не по отдельным и слу­чайным признакам, а по существенным сторонам их струк­турно-функциональной организации. В практике цитогенетического анализа с этой целью.исследуют дифференци­альную конденсацию хромосом, хронологию репликации ДНК в хромосомах или дифференциальную окрашиваемость хромосом (А. Ф. Захаров, 1977).

Дифференциальность конденсации участ­ков хромосомы - одна из существенных ее характеристик, наиболее полно выраженная в интерфазном ядре. В естественных условиях течения митоза хромосомные участки, резко различающиеся по степени конденсации в период интерфазы, в метафазе выглядят практически оди­наково. Лишь при специальных способах световой или электронной микроскопии удается обнаружить неоднород­ную линейную структуру внешне гомогенной метафазной

хромосомы (Bahr, Larsen, 1974). Выравнивание циклов конденсации в разных участках хромосом можно затормо­зить искусственно. С этой целью особенно успешно при­меняется 5-бромдезоксиуридин (А. Ф. Захаров, 1973, 1977;

Dutrillaux, Lejeune, 1975). В присутствии этого вещества хромосомы вступают в метафазу неравномерно уплотнен­ными по своей длине. В результате тщательного изучения их морфологии показано, что каждая хромосома человека имеет строго постоянное и специфическое чередование нор­мально и слабо конденсированных участков и по этому признаку может быть идентифицирована.

Внутрихромосомная асинхронность реплика­ции ДНК является второй важнейшей чертой линейной неоднородности хромосомы, которая может быть выявлена в метафазе митоза. В течение полутора десятков лет эта черта хромосомной организации была доступна изучению методом радиоавтографии хромосом (под ред. А. А. Прокофьевой-Бельговской, 1969; А. Ф. Захаров, 1977; Giannelli, 1970, 1974). На основе этого метода были вскрыты прин­ципиальные закономерности репродукции хромосом чело­века, среди которых асинхронность репродукции разных участков хромосомы, постоянство и специфичность поряд­ка репродукции для данной хромосомы являются важней­шими. Однако идентификацию индивидуальных хромосом радиоавтография продвинула меньше, чем этого ожидали. На радиоавтографах дополнительно удается различить аутосомы 4 и 5, 13, 14 и 15, 17 и 18. В женских клетках одна из двух Х-хромосом отличается поздним началом и поздним окончанием синтеза ДНК. Несмотря на ограни­ченность данных, получаемых методом радиоавтографии, этот прием оказался исключительно полезным в улучше­нии идентификации аномалий указанных хромосом и по­мог в выделении нескольких новых самостоятельных синд­ромов в хромосомной патологии.


1. Понятие о кариотипе и кариограмме.

Кариотип - это совокупность всех хромосом диплоидного набора клетки, который характеризуется количеством хромосом и особенностями строения каждой хромосомы. Для нормального кариотипа характерно следующее:


  • присутствует нормальное количество хромосом,

  • все хромосомы представлены парами гомологичных друг другу хромосом,

  • каждая хромосома имеет нормальное строение: характерное для нее расположение центромеры, соотношение и строение плеч, отсутствуют хромосомные мутации.
Кариограмма – это изображение всех хромосом диплоидного набора клетки, которые распределены по группам и расположены друг за другом в порядке уменьшения размеров с учетом индивидуальных особенностей каждой хромосомы.

Организмы разных видов различаются по кариотипу: по числу и/или индивидуальным особенностям тех или иных хромосом. Кариотип и хромосомы человека обладают многими признаками, общими для кариотипа и хромосом организмов других видов.


  1. Хромосомы состоят из хроматина – комплекса ДНК с многочисленными белками.

  2. Структурной единицей хроматина является нуклеосома – комплекс из четырех пар гистоновых белков, вокруг которого намотано около двух витков молекулы ДНК. В одной хромосоме находится только одна молекула ДНК, которая намотана на тысячи гистоновых комплексов.

  3. Разные участки хроматина различаются по степени конденсации, или упаковки в пространстве . Эухроматин слабо конденсирован и содержит активно функционирующие гены. Гетерохроматин сильно конденсирован и содержит нефункционирующие гены и участки ДНК, не содержащие гены. Участки гетерохроматина окрашиваются красителями сильнее, чем участки эухроматина и в микроскоп выглядят более темными.

  4. При делении клетки хроматин, конденсируясь, приобретает вид плотных палочковидных структур, особенно хорошо видимых в метафазу митоза.

  5. Диплоидный набор хромосом представляет собой набор пар гомологичных друг другу хромосом. Хромосомы каждой пары гомологичны друг другу и негомологичны всем остальным хромосомам. Кариотип человека включает в себя 46 хромосом: 22 пары аутосом и две половые хромосомы: две Х-хромосомы у женщин, Х- и Y-хромосомы у мужчин.

  6. Негомологичные хромосомы различаются по длине и форме, имеют приблизительно одинаковую толщину.

  7. Все хромосомы имеют два плеча и расположенный между ними истонченный участок – центромеру, или первичную перетяжку. В области первичной перетяжки расположен кинетохор – плоская структура, белки которой, взаимодействуя с микротрубочками веретена деления, обеспечивают перемещения хромосом во время деления клетки.

  8. Некоторые хромосомы имеют вторичную перетяжку, в области которой расположены гены рибосомных РНК, происходит синтез рРНК и образуется ядрышко ядра. У человека вторичную перетяжку имеют хромосомы 13, 14, 15, 21 и 22.

  9. В кариотипе находятся хромосомы трех типов, различающиеся по расположению центромеры и,соответственно, соотношению плеч.

  10. Концы каждой хромосомы – это теломеры . У человека ДНК теломерного участка представляет собой многократно повторяющуюся нуклеотидную последовательность 5" ТТАГГГ 3" в одной из нуклеотидных цепей ДНК.

  11. После каждого акта репликации и деления клетки происходит укорочение теломерных участков хромосом.

  12. В диплоидном наборе женских особей находится две Х-хромосомы, а в диплоидном наборе мужских особей – одна Х-хромосома и одна Y-хромосома. Х- и Y-хромосомы различаются по длине, форме и наборам генов. У человека ген SRY Y-хромосомы обусловливает развитие мужского пола.

  13. Во время профазы и метафазы митоза каждая хромосома состоит из двух одинаковых хроматид – одинаковых копий материнской хромосомы, образовавшихся после репликации ДНК.
2. Получение кариограммы.

Для изучения кариотипа обычно используют лейкоциты периферической крови, клетки красного костного мозга и некоторые другие клетки. При необходимости изучают клетки оболочек зародыша и плода, так как они имеют такой же кариотип и генотип, как клетки еще неродившегося организма, поскольку тоже являются потомками зиготы.

Клетки помешают в питательную среду и побуждают их к делению с помощью специальных стимуляторов деления. Одним из стимуляторов деления является вещество растительного происхождения фитогемагглютинин (ФГА). Фитогемагглютинин является углеводом обыкновенной фасоли Phaseolus vulgaris, способный агглютинировать эритроциты . Фитогемагглютинин является сильным митогеном – веществом, стимулирующим деление клеток путем митоза.

Под влиянием ФГА клетки начинает делиться путем митоза. Затем в культуральную среду с делящимися клетками добавляют колхицин. Это алкалоид растительного происхождения, обычно получаемый из безвременника (зимовника) осеннего (Colchicum autumnale ) или других представителей семейства лилейные. Колхицин препятствует образованию микротрубочек из белка тубулина. В делящейся клетке микротрубочки входят в состав веретена деления и в норме сначала обеспечивают передвижение всех хромосом в область экватора веретена деления, а затем участвуют в расхождении хроматид каждой хромосомы в разные стороны , к разным полюсам веретена деления клетки. Поэтому в присутствии колхицина деление всех клеток останавливается на одной и той же стадии митоза: в конце профазы, непосредственно перед метафазой. В зарубежной научной литературе эта стадия называется прометафазой. В эту стадию все хромосомы полностью конденсированы и хорошо видны в световой микроскоп в виде палочковидных структур, расположенных в одной плоскости. Совокупность всех таких хромосом одной клетки называется метафазной пластинкой (рис.1).

Для удобства изучения живые клетки помещают в гипотонический раствор поваренной соли. В таком растворе вода заходит в клетку, клетка увеличивается в размере, и хромосомы более свободно распределяются в цитоплазме - на большем , чем прежде, расстоянии друг от друга.

Затем хромосомы окрашивают, фотографируют и изучают их изображение под микроскопом. Окраску проводят простыми, диффенциальными или флюоресцентными красителями, которые помогают идентифицировать хромосомы.

Рис.1. Метафазная пластинка человека.

1 – большая метацентрическая хромосома

2 – маленькая акроцентрическая хромосома

3 – большая субметацентрическая хромосома

4 – маленькая метацентрическая хромосома

5 – средняя акроцентрическая хромосома.

Как видно из рис.1, хромосомы различаются по размеру и форме. Все они имеют Х- или Y-образную форму, что обусловлено тем, что дочерние хроматиды – копии материнской хромосомы - остаются соединенными в области первичной перетяжки.

В метафазной пластинке каждая хромосома состоит из двух одинаковых хроматид. Для каждой хромосомы диплоидного набора имеется лишь одна, парная ей хромосома. Парные хромосомы называются гомологичными друг другу хромосомами. Гомологичные хромосомы имеют одинаковые внешние признаки: длину; форму (расположение первичной перетяжки и соответствие плеч, наличие или отсутствие вторичной перетяжки) и одинаковую степень конденсации хроматина в тех или иных участках: участки с сильно конденсированным хроматином выглядят темными, а участки со слабо конденсированным хроматином - более светлыми. По этим же признакам негомологичные друг другу хромосомы отличаются друг от друга. Различают следующие типы хромосом человека (рис.2):


  • Метацентрические , равноплечие хромосомы: первичная перетяжка (центромера) расположена в центре (посередине) хромосомы, плечи хромосомы одинаковые.

  • Субметацентрические , почти равноплечие хромосомы: центромера находится недалеко от середины хромосомы, плечи хромосомы незначительно отличаются по длине.

  • Акроцентрические , очень неравноплечие хромосомы: центромера находится очень далеко от центра (середины) хромосомы, плечи хромосомы существенно различаются по длине.



Рис.2. Типы хромосом человека.

Поскольку каждая пара гомологичных друг другу хромосом имеет характерные для них признаки, то это позволяет идентифицировать конкретные хромосомы. Идентифицировав хромосомы, строят кариограмму: располагают хромосомы в порядке уменьшения размера, раскладывая их по группам в зависимости от размера и формы. При построении кариограммы половые хромосомы располагают отдельно от аутосом, хотя Х-хромосома относится к хромосомам группы С, а Y-хромосома – к хромосомам группы G.

Кариограмму строят при изучении кариотипа конкретного человека. Обобщенная, идеализированная кариограмма, в которой представлены особенности кариотипа вида, называется идиограммой . Идентифицируя хромосомы и строя кариограмму конкретного человека, врач-генетик всегда имеет перед собой образец - идиограмму вида Человек разумный.

На рис. 3 представлена кариограмма мужчины с нормальным кариотипом. В прямоугольной рамке показаны половые хромосомы женщины с нормальным кариотипом.


Рис. 3. Нормальная кариограмма человека.
В первых семи рядах кариограммы представлены аутосомы групп A – G. Они одинаковы в кариотипах мужского и женского организмов. В последнем ряду представлены половые хромосомы. В мужском кариотипе это Х-хромосома группы С и Y-хромосома группы G. В женском кариотипе это две Х-хромосомы . Таким образом, кариограммы мужского и женского организмов легко отличить друг от друга: кариограмма женского организма содержит две одинаковые метацентрические хромосомы среднего размера – Х-хромосомы, а кариограмма мужского организма содержит две разные по размеру и форме хромосомы: одну метацентрическую хромосому среднего размера – Х-хромосому и одну акроцентрическую хромосому небольшого размера – Y-хромосому.

Процедура составления кариограммы вручную трудоемка и требует определенной последовательности действий. Составление кариограммы является частью лабораторной работы, которую выполняют студенты первого курса медицинского университета.

В последние годы для идентификации хромосом и построения кариограммы используют компьютерные программы. При этом изображение метафазной пластинки поступает в компьютер через видеокамеру, соединенную с люминесцентным микроскопом.

3. Лабораторная работа “Составление кариограммы человека”.

На лабораторной работе каждый студент получает конверт с набором из 45-47 изображений хромосом человека и лист бумаги с названиями групп хромосом . Задачей студента является правильное разложение хромосом по группам.


  1. Все хромосомы в зависимости от формы разделите на две большие группы:

    • акроцентрические хромосомы

    • метацентрические и субметацентрические хромосомы

  2. Обратите внимание на акроцентрические хромосомы. Все акроцентрические хромосомы в зависимости от размера разделите на две небольшие группы:

    • средние акроцентрические хромосомы.

    • маленькие акроцентрические хромосомы

  3. Маленькие акроцентрические хромосомы – это хромосомы группы G . В нормальном кариотипе их может быть 4-5 хромосом в зависимости от пола человека. В нормальном женском кариотипе это 2 пары аутосом, в нормальном мужском кариотипе – 2 пары аутосом и одна Y-хромосома. У людей с с. Дауна и с. лишней Y-хромосомы группа G может содержать 5-6 хромосом. К сожалению, обычное окрашивание хромосом не позволяет с уверенностью различить хромосому 21-й пары и Y-хромосому. По этой причине набор изображений 5-и хромосом группы G может принадлежать и женщине с с. Дауна, и мужчине с с. Клайнфельтера, а набор изображений 6-и хромосом группы G может принадлежать и мужчине с с.Дауна, и мужчине с дополнительной Y-хромосомой в кариотипе. Если у вас всего 2 пары хромосом этой группы, то положите их изображения на лист с названиями групп хромосом напротив названия группы G. Если у вас имеется еще две хромосомы этой группы, то одну из них положите рядом с хромосомами 21-й пары, а другую – на место половых хромосом, считая ее Y-хромосомой. Если у вас имеется 5 хромосом этой группы, то до окончания составления кариограммы вы можете считать ее хромосомой 21-й пары или Y-хромосомой. В зависимости от вашего предварительного выбора положите 5-ю хромосому этой группы в соответствующее место листа с названиями групп хромосом.

  4. Средние акроцентрические хромосомы – это хромосомы группы D. В нормальном кариотипе их 3 пары. При с. Патау в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 13-й пары. Положите изображения хромосом группы D на лист с названиями групп хромосом в соответствующее место.

  5. Вы разложили все акроцентрические хромосомы. Теперь обратите внимание на оставшиеся не разложенными метацентрические и субметацентрические хромосомы. Все эти хромосомы в зависимости от размера разделите на две небольшие группы:

    • крупные и средние хромосомы

    • короткие и маленькие хромосомы.

  6. Обратите внимание на короткие и маленькие хромосомы последней группы. Выберите из них 2 пары самых маленьких метацентрических хромосом. Это хромосомы группы F. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место. Оставшиеся хромосомы – это хромосомы группы Е. В нормальном кариотипе их 3 пары. При с. Эдвардса в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 18-й пары. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место.

  7. Обратите внимание на оставшиеся не разложенными крупные и средние хромосомы. Выберите из них 3 пары самых крупных хромосом. Это метацентрические хромосомы группы А. Положите их изображения на лист с названиями групп хромосом.

  8. Из оставшихся хромосом выберите 2 пары самых больших хромосом. Это метацентрические хромосомы группы В. Положите их изображения на лист с названиями групп хромосом в соответствующее место.

  9. Все оставшиеся хромосомы – это субметацентрические хромосомы группы С. 7 пар хромосом этой группы – это аутосомы. Положите их изображения на лист с названиями групп хромосом напротив названия группы С. Все остальные хромосомы этой группы – это Х-хромосомы. Количество Х-хромосом в кариотипе конкретного человека может быть 1-3. Положите изображения Х-хромосом на лист с названиями групп хромосом в соответствующее место.

  10. Внимательно изучите составленную вами кариограмму. Кариограмма не должна содержать одновременно две крупные аномалии, поскольку это не встречается в реальной жизни . Это может случиться в том случае , если вы неправильно идентифицировали Y-хромосому, приняв ее за хромосому 21-й пары. Например, кариограмма не может содержать одновременно трисомию про 21-й хромосоме и моносомию по Х-хромосоме, то есть, кариограмма не может принадлежать человеку, страдающему одновременно с. Дауна и с.Шерешевского-Тернера. Скорее всего, в вашем распоряжении нормальная кариограмма мужчины. Для исправления ошибки достаточно перенести одну из 3-х хромосом 21-й пары на место расположения половых хромосом, поместив ее рядом с Х-хромосомой. При составлении кариограммы конкретного человека такая ситуация не возникает, так как еще до начала составления кариограммы известен пол человека и предварительный диагноз.
3. Анализ кариограммы человека.

При анализе кариограммы от студента требуется следующее:


  • уметь идентифицировать пол человека

  • уметь идентифицировать нормальный кариотип человека

  • уметь идентифицировать наличие хромосомного заболевания, связанного с аномалией числа хромосом (с. Дауна, с. Клайнфельтера, с. Шерешевского-Тернера, с. Трисомии - Х, с. Патау, с. Эдвардса, с. лишней Y-хромосомы).
Анализируя кариограмму, обращают внимание на следующие ее признаки:

  • общее количество хромосом;

  • парность или непарность тех или иных хромосом;

  • количество и вид половых хромосом;

  • наличие тех или иных аномалий числа хромосом.
При анализе кариограммы человека следует придерживаться следующей последовательности действий.

    • Пронумеруйте пары гомологичных хромосом; нумеруйте их даже в том случае, если гомологичные хромосомы представлены не двумя, а одной или тремя хромосомами.

    • Найдите на кариограмме аутосомы и половые хромосомы. Половые хромосомы обычно располагают отдельно от аутосом. Нормальная кариограмма содержит 22 пары аутосом и 1 пару половых хромосом. Кариограмма больного человека может содержать 45- 46 аутосом и 1-3 половых хромосомы.

    • Определите пол человека по его кариограмме. Для этого внимательно изучите половые хромосомы.

    • Если все они одинаковые, среднего размера и метацентрические, значит все они – Х-хромосомы, а перед вами кариограмма женского организма.

    • Если среди половых хромосом есть небольшая акроцентрическая хромосома, значит это – Y-хромосома, а перед вами кариограмма мужского организма.

    • Посмотрите, все ли хромосомы представлены парами.

    • Если кариограмма содержит 23 пары хромосом, значит перед вами нормальная кариограмма человека.

    • Если в кариограмме те или иные хромосомы представлены 1 или 3 хромосомами, значит перед вами кариограмма с геномной мутацией – отсутствием или избытком хромосом. В этом случае кариограмма содержит 45 или 47 хромосом.

    • Определите порядковый номер пары хромосом, в которой обнаружена геномная мутация. Наиболее часто встречаются следующие аномалии:

    • аномалии числа аутосом:
- дополнительная хромосома 13-й пары при с. Патау

Дополнительная хромосома 18-й пары при с. Эдвардса

Дополнительная хромосома 21-й пары при с. Дауна


  • аномалии числа половых хромосом:
- дополнительная Х-хромосома в женской кариограмме при с. Трисомии-Х

Дополнительная Х-хромосома в мужской кариограмме при с. Клайнфельтера

Дополнительная Y-хромосома в мужском кариотипе при с. лишней Y-хромосомы

Нехватка Х-хпромосомы в женском кариотипе при с. Шерешевского-Тернера.


  • Анализ кариограммы завершается записью формулы кариотипа. Формула кариотипа включает в себя следующее:
а) запись общего числа хромосом,

б) запись сочетания половых хромосом,

в) сведения об аномалии числа хромосом (если имеется): указывают хромосому и вид аномалии. Например:

Формула кариотипа женщины, страдающей синдромом Дауна: 47, ХХ, 21+;

Формула кариотипа мужчины, страдающего синдромом Клайнфельтера: 47, ХХY,

Формула кариотипа женщины с синдромом Шерешевского-Тернера: 45, Х0.

4. Пример анализа кариограммы человека.

Упражнение. Сделайте анализ кариограммы человека (рис.4).


Рис. 4. Кариограмма человека.

Кариограмма человека содержит 47 хромосом. Большинство хромосом расположено в порядке уменьшения их размеров. Это аутосомы. В нижнем ряду в стороне от них расположены три хромосомы. Это половые хромосомы. Все аутосомы представлены парами. Всего в кариограмме 22 пары аутосом. Половых хромосом – 3. Две из них – крупные и их первичная перетяжка – центромера – расположена почти посередине. Это Х-хромосомы. Рядом с ними находится небольшая хромосома с первичной перетяжкой, расположенной ближе к краю хромосомы. Это – Y-хромосома. Кариограмма принадлежит представителю мужского пола, так как имеется Y-хромосома. Кариограмма содержит аномалию: лишнюю Х-хромосому. Такая кариограмма характерна для особей мужского пола, страдающих синдромом Клайнфельтера: у больных отмечается евнухоидное телосложение, иногда увеличены молочные железы, слабое оволосение на лице, часто отмечается умственная отсталость, инфантилизм, они бесплодны. Формула кариотипа человека - 47, ХХY.

5. Задание для самостоятельной работы.

Проведите анализ следующих кариограмм.

Кариограмма 1.

Кариограмма 2.

Кариограмма 3.

Кариограмма 4.

6. Совершенствование в изучении кариограммы человека.

6.1. Дифференциальное окрашивание хромосом

Современные цитогенетические ме­тодики позволяют идентифицировать по морфологии все пары хромосом на препарате. Суть этих ме­тодик состоит в дифференциальном окрашивании хромосом по длине, что обеспечивается сравнитель­но простыми температурно-солевыми воздействиями на фиксированные хромосомы или использованием спе­цифических красителей. Дифференциальное окрашивание при­водит к появлению линейного рисунка по длине хромосомы.

Несмотря на большое разнообразие способов обработки хромосомных пре­паратов и красителей, выявляемый ли­нейный рисунок хромосомы всегда один и тот же. Он меняется только в зависимости от степени конденсиро­ванного состояния хромосомы. Сегмент, види­мый как одна полоса в метафазной хромосоме, в менее конденсированной прометафазной хромосоме, может предстать в виде нескольких мелких полос.
Дифференциальное окрашивание в зависимости от используемого метода может охватывать либо всю длину хро­мосомы, либо ее центромерный район.
Представление о рисунке диффе­ренциально окрашенных по всей дли­не хромосом можно получить, окраши­вая препараты по G-методу с исполь­зованием красителя Гимзы (рис. 5). В этом случае хромосомы выглядят состоя­щими из поперечно-исчерченных, по-разному окрашенных сегментов. Каж­дой паре хромосом присущ индивиду­альный рисунок исчерченности за счет неодинаковых размеров сегментов. В мелких хромосомах рисунок образует­ся единичными сегментами, в крупных хромосомах сегментов много. Общее для нормального хромосомного набо­ра число окрашенных и неокрашенных сегментов в метафазе составляет около 400. В прометафазных хромосомах оно увеличивается до 850 и более.


Рис. 5. Схематическое изображение хромосом человека при G - окрашивании в соответствии с международной классификацией

6.2. Метод флюоресцентной гибридизации in situ.

Успехи молекулярной цитогенетики человека позволили разработать новые методы изучения хромосом. Одним из них является метод флюоресцентной гибридизации in situ (FISH). Это метод основан на комплементарном взаимодействии ДНК изучаемого объекта с небольшой искусственной последовательностью нуклеотидов ДНК, называемой ДНК-зондом. ДНК-зонд соединен с флюоресцирующим веществом. Комплементарное взаимодействие ДНК изучаемого объекта и ДНК-зонда называется гибридизацией ДНК . Если гибридизация происходит, то это событие фиксируется люминесцентным микроскопом и свидетельствует о наличии в исследуемом образце фрагмента ДНК, комплементарного ДНК-зонду. С помощью этого метода , имея набор разных ДНК-зондов, можно даже в неделящейся клетке выявить аномалию числа хромосом и наличие патологического гена, а также выявить мелкие хромосомные мутации, которые трудно обнаружить обычными способами. При этом разные хромосомы или их участки выглядят как разноцветные структуры (рис. 6, 7).

Рис. 6. Нормальная женская кариограмма человека, полученная при использовании методики спектрального кариотипирования.

Рис. 7. Кариограмма мужчины с переносом участка 1-й хромосомы на 3-ю и потерей участка 9-й хромосомы.

Кариотипирование (исследование кариотипа) проводится с целью определения количества и структуры хромосом и выявления возможных отклонений от нормы.

Нарушения в хромосомном наборе (количественные и структурные) могут быть причиной бесплодия, наследственного заболевания, рождения больного или мертвого ребенка. Человек может являться носителем хромосомных нарушений, даже не зная об этом.

  • 3 - 5% частота хромосомных патологий даже среди здоровых людей, а у лиц с репродуктивными нарушениями достигает 5–10%;
  • 65% ранних выкидышей обусловлены хромосомной патологией эмбриона
  • 99% точность кариотипирования с помощью современных методов анализа
Записаться на процедуру

Кариотипом называется хромосомный набор клеток живого организма. В состав каждой хромосомы входят гены, отвечающие за формирование индивидуальных особенностей (цвет глаз, волос и кожи, рост и другое). Человеческий геном состоит из 46 хромосом (23 пары). Первые 22 пары называются аутосомами и они определяют передачу большинства наследственных признаков, последняя пара представлена хромосомами Х и Y, которые определяют пол человека.

Нормальный кариотип:

  • у женщин: 46,ХХ;
  • у мужчин: 46,ХУ.

Перестройка в какой-либо из хромосом может никак не проявляться у человека, но иметь значение при образовании половых клеток и передаваться будущему ребенку, либо препятствовать возникновению и вынашиванию беременности.

Что позволяет определить кариотипирование

Исследование кариотипа дает возможность определить:

  • кариотип у супругов, планирующих беременность;
  • риск рождения ребенка с пороками развития или тяжелой генетической болезнью (у родителей - носителей хромосомных перестроек);
  • патологические хромосомы, являющиеся причиной невынашивания или бесплодия;
  • причину умственной отсталости и задержки полового развития у ребенка.

Показания

Кариотипирование проводится на этапе планирования беременности при наличии следующих показаний:

  • привычное невынашивание (2 и более выкидышей или замерших беременностей);
  • длительное бесплодие с неустановленной причиной;
  • отклонения от норм в спермограмме (олигозооспермия и необструктивная форма азооспермии);
  • многочисленные и неудачные попытки ЭКО, ИКСИ;
  • планирование ЭКО;
  • рождение мертвого ребенка или гибель ребенка на первом году жизни в анамнезе;
  • наличие ребенка с хромосомной патологией или врожденными множественными пороками развития (МВПР);
  • подозрение на генетические нарушения по внешним признакам (форма и длина пальцев, носа, глаз и прочее);
  • аменорея;
  • работа или проживание в неблагоприятных экологических условиях (например, с повышенным радиационным фоном).

Также исследование кариотипа проводится при обследовании доноров генетического материала (яйцеклетки, сперма) и по желанию человека или семейной пары.

Подготовка к исследованию

Исследование кариотипа проводится один раз в жизни, так как состав и строение хромосом не изменяется с течением времени. Для проведения анализа необходимы лимфоциты венозной крови пациента. Правила, требующие соблюдения накануне исследования (за 3 - 4 недели):

  • отказ от приема лекарств, особенно антибиотиков;
  • отсутствие острых инфекционных заболеваний.

В отличие от других анализов, сдача крови для кариотипирования возможна не на пустой желудок.

Как проводится кариотипирование

Исследование кариотипа - многоступенчатый процесс, для которого необходимы живые клетки:

  • обработка клеток митогеном для стимуляции их деления;
  • остановка деления клеток специальными веществами в период клеточного цикла, когда можно наблюдать хромосомы (обычно через 72 часа после стимуляции деления клеток);
  • приготовление препаратов хромосом на микроскопических стеклах;
  • окрашивание препаратов хромосом для визуализации структуры и морфологии хромосом под световым микроскопом);
  • изучение препаратов (подсчет числа хромосом, анализ строения каждой хромосомы).

Для получения достоверных результатов исследуется хромосомный набор 12 - 15 клеток. Результаты изучают и анализируют врачи-лаборанты генетики. При выявлении отклонении следует обратиться за консультацией к врачу клиническому генетику, который разъяснит возможные риски и составит индивидуальную схему дальнейших действий (например, при высоком риске хромосомной болезни у будущего ребенка в случае беременности рекомендуется кариотипирование плода).

Сроки выполнения анализа составляют 20–25 дней.

Наши преимущества

  • Специалисты. Опытные специалисты, с блестящим образованием и учёными степенями помогают докторам решать сложнейшие репродуктивные проблемы пациентов.
  • Генетическая лаборатория Современная лаборатория молекулярной генетики создана по лучшим мировым стандартам качества - от специального покрытия стен и 5-уровневой системы вентиляции, предупреждающей контаминацию (смешение биопрепаратов на молекулярном уровне), до новейшего оборудования и технологий инновационных генетических исследований.
  • Индивидуальный подход, комплексные решения. Индивидуальные эффективные комплексные программы для решения проблем деторождения семейной пары с использованием всех ресурсов нашего ЦМРТ и многопрофильного госпиталя.
  • Международные связи. Генетическая лаборатория нашего госпиталя активно сотрудничает с лабораторией Лондонского университета, генетическими лабораториями BGI Europe и Ingenomix (Испания), международной сетью клиник IVIIVF.

Цены на услуги Вы можете посмотреть в

Определение кариотипа человека. История исследования

Невозможность зачать и произвести на свет здорового ребенка - проблема многих пар. Бесплодие часто называют болезнью современного общества, однако это не совсем так. Объективные причины, когда появлению потомства у конкретных мужчины и женщины препятствует сама природа, существовали всегда. Одна из главных - нарушения в кариотипах потенциальных родителей.

Что включает в себя это понятие? Возникновению термина современная наука обязана советскому ученому Григорию Левитскому, который в 20-х годах ХХ века проводил глубокие исследования в области цитологии. В дальнейшем его идеи были развиты зарубежными коллегами Сирилом Дином Дарлингтоном и Майклом Дж. Д. Уайтом, изучавшими вопросы наследственности.

Кариотип объединяет все признаки хромосомного набора: их количество, величину, форму и т. д. Термин может относиться:

  • К целому биологическому виду: например, кариотип человека, медведя, лягушки и проч.
  • К отдельно взятому организму. Характеризуется индивидуальными особенностями хромосом.

Учеными установлены главные свойства кариотипа:

  • Содержит все генетические «сведения» о своем владельце.
  • Половина информации закладывается от матери, другая - от отца.
  • В течение жизни организма не испытывает никаких изменений.

Роль хромосом в развитии организма, их виды и строение

Структуры внутри ядра клетки-эукариота, состоящие из комплексов белков и нуклеиновых кислот, называют хромосомами. Они отвечают за наследственную информацию, ее хранение, проявления и передачу следующим поколениям. Основа хромосомы - ДНК. Каждая из таких структур содержит в себе разные гены. Поэтому даже в одном наборе хромосомы нельзя считать равноценными.

Нормальный кариотип организма человека включает в себя 46 нуклепротеидных структур. Это 44 гомологичных аутосом и две, отвечающие за половые признаки. Кариотип мужчины обозначают как 46,XY, женщины - 46,XX.

Аутосомы гомологического типа разделяют исходя формы и величины на 7 категорий, которые обозначают первыми буквами латинского алфавита. Кроме этого, таким хромосомам присваивают числа от одного до 22 по мере того, как уменьшается длина структуры.

Аутосомы классифицируют и в зависимости от того, как расположена первичная перетяжка, именуемая центромерой. Она служит разделением двух сестринских хроматид, которые в результате образуют так называемые плечи структуры. Для обозначения длинного используют букву q, короткого - p.

  • При срединном размещении перетяжки хромосомы называют метацентрическими, или равноплечими.
  • При расположении в районе одного конца - субметацентрическими. Значения q и p существенно различаются.
  • При нахождении в области теломерного участка - акроцентрическими. У таких хромосом на коротком плече имеются спутники, характеризующиеся присутствием генов рРНК.

Итак, по совокупности признаков хромосомы в кариотипе человеческого организма принято объединять в 7 больших категорий:

  • A . Сюда входят равноплечие аутосомы самых крупных размеров под первыми тремя номерами.
  • B . Представляет собой объединение 2 пар гомологов субметацентрического типа с номерами 4-5.
  • C . Группа состоит из 7 пар структур средней величины, также субметацентриков, пронумерованных от 6 до 12. Сюда же обычно включается и женская половая хромосома Х, поскольку имеет идентичное строение и внешний вид.
  • D . Здесь разместились хромосомы-акроцентрики: 3 пары средней величины с номерами от 13 до 15.
  • E . Объединяет пару, зафиксированную под цифрой 16, - в этой аутосоме первичная перетяжка локализована медианным образом. Сюда же относятся гомологи 17 и 18 с небольшой общей длиной и короткими плечами.
  • F . Место самых маленьких хромосом-метацентриков (19-ый и 20-ый номера).
  • G . Здесь сосредоточены мельчайшие из гомологов акроцентрического типа (21-ый и 22-ой).

Отвечающая за мужской пол хромосома Y тоже принадлежит к последней группе и все же стоит особняком, потому что почти всегда имеет ярко выраженные внешние отличия.

Из чего складывается кариотип ребенка: влияние отцовского и материнского хромосомных наборов

Современные методы позволяют определить врожденные патологии на самой ранней стадии развития: именно тогда проявляются аномалии кариотипа. Чаще всего нарушения возникают в период продуцирования родительских половых клеток - гематогенеза. Это влечет за собой патологические изменения структуры зиготы, а затем всех эмбриональных клеток и впоследствии развивающегося организма.

Кариотипы женщины и мужчины дают ребенку совокупность наследственных признаков, которая складывается из цвета кожи, волос, глаз, роста, особенностей голоса и т. д. К сожалению, также от родителей малышу может передаваться и предрасположенность к ряду хронических заболеваний:

  • Недугам сердечно-сосудистой системы. Вовсе не обязательно, что, став взрослым, ребенок обязательно получит ИБС, но есть вероятность унаследовать факторы, которые способствуют ее появлению. Речь идет о нарушениях обмена холестерина, патологиях почек и гормональной системы.
  • Сахарному диабету 2-го типа. Его возникновение регулируется целой группой генов, и в наследство ребенок получает опять-таки лишь предрасположенность. Болезнь может развиться при ожирении, перенесенных вирусных инфекциях.
  • Стоматологическим проблемам. Младенец наследует размер зубов родителей, строение и степень прочности тканей, особенности челюстей и состав слюны. Поэтому если отец и мать страдают кариесом, то ребенку грозит повышенная опасность столкнуться с теми же неприятностями.
  • Алкоголизму. Наследственная предрасположенность к этому недугу установлена учеными лишь недавно. В данном случае речь идет о передаче нервно-психических расстройств и нарушений в работе систем, отвечающих за нормальный обмен ферментов.

Это неполный список недугов, риск возникновения которых может быть заложен в кариотип ребенка. Однако в данном случае медики говорят лишь о 22-50 процентах вероятности заболеть. Правильный образ жизни и внимательное отношение к своему здоровью помогут «обойти» наследственность и избежать неприятных диагнозов.

Что показывает кариотип: вероятность хромосомных болезней, их виды, отличительные особенности, прогноз

Иначе складывается ситуация, когда патологиями поражен непосредственно генетический материал отца, матери или обоих родителей. Не имея никаких клинических проявлений, аномалии кариотипа, нарушения строения и функций хромосом грозят весьма печальными последствиями:

  • Бесплодием - невозможностью пары зачать собственного ребенка.
  • Спонтанными абортами. В первые три месяца беременности порядка 60 процентов выкидышей происходит по причине именно генетических аномалий. Из этого числа половина случаев приходится на долю трисомий различного характера, около 25 процентов возникает по причине полиплодии, в остальных ситуациях диагностируют моносомию по Х-составляющей.
  • Если патологические изменения в кариотипе человека произошли, когда дробилась зигота, то разовьется организм с несколькими клеточными линиями или клонами. Все они будут иметь разные хромосомные наборы. Это явление получило название мозаицизм. С ним связан ряд генетических болезней.

В ряду наследственных недугов хромосомным патологиям отводят одно из ведущих мест. Большинство аномалий несовместимы с жизнью в постнатальном периоде. Поэтому если у зародыша «искаженный» кариотип, строение и функции которого существенно нарушены, то, вероятнее всего, на 7-14 день развития произойдет естественная элиминация - удаление из организма матери.

Другую часть таких эмбрионов ждет участь ранних выкидышей. Процент выживаемости плода с поврежденными хромосомами колеблется по разным данным от 0,5 до 2. В этом случае на свет появляется ребенок с аномальным кариотипом, признаки которого можно обнаружить сразу после рождения. Чаще всего речь идет о следующих хромосомных заболеваниях:

  • Синдроме Дауна. Причину определяют, как трисомию по 21 хромосоме.
  • Синдроме кошачьего крика. Здесь дело в делеции короткого плеча 5 хромосомы.
  • Синдроме Патау. Вызван трисомией по 13 хромосоме.
  • Синдроме Шерешевского-Тернера. Причина в моносомии по Х-структуре, включающей мозаицизм.
  • Синдроме Клайнфельтера. Возникает из-за полисомии у мужчин по Х-хромосоме.
  • Синдроме Эдвардса. Появляется по причине трисомии по 18 хромосоме.

По статистике, дети, рожденные с генетическими отклонениями, составляют около 1 процента всех младенцев. Однако заболеваний, связанных с нарушением нормального кариотипа, сегодня известно свыше 700. Более 46 процентов из них связаны с патологическим изменением хромосом, отвечающих за пол. Из-за отклонений в структуре или количестве аутосомных составляющих возникает порядка 25 процентов аномалий. Чуть более 10 процентов недугов появляются из-за структурных перестроек:

  • Транслокаций. Так именуют процессы «обмена» фрагментами между разными хромосомами.
  • Делеций. Хромосома теряет определенный участок.
  • Дупликаций. Появляется копия какого-либо фрагмента структуры, причем помещается или рядом с оригиналом, или на другом конце цепочки, или «выбирает» абсолютно другую хромосому.
  • Инверсий. Фрагменты структуры поворачиваются на 180 градусов.

Заболевания, вызванные нарушениями кариотипа ребенка, приводят к появлению внешних признаков, характерных для того или иного недуга. Это может быть плоское лицо, деформация ушных раковин, избыток пигментации кожи и другие выраженные свойства. Отмечаются аномалии в строении скелета, а также болезни внутренних органов: пороки со стороны сердечно-сосудистой системы, почек. В ряде случаев, хотя и далеко не во всех, хромосомные патологии сопровождаются отсталостью умственного развития.

Прогноз продолжительности жизни зависит от конкретной генетической аномалии. Чаще всего дети с поврежденным кариотипом погибают в первые годы или даже месяцы жизни. Однако, например, пациенты с синдромом Орбели нередко перешагивают 40-летний рубеж.

Современные методы исследования кариотипа: показания и технологии

Научные достижения в области медицины и генетики позволяют с точностью проанализировать хромосомный набор человека на предмет отклонений. Это незаменимо как для лечения бесплодия, так и для оказания помощи ребенку, рожденному с генетическими патологиями. Выяснить, что показывает кариотип, специалисты настоятельно рекомендуют в случаях:

  • проблем с зачатием ребенка при наличии регулярных незащищенных половых контактов;
  • присутствия в анамнезе женщины двух и больше выкидышей;
  • олигозооспермии или азооспермии не обструктивного типа;
  • замершей беременности;
  • отклонений в половом развитии;
  • возраста будущей мамы старше 35 лет;
  • наличия генетических отклонений у близких родных;
  • смертности детей до года в семье;
  • рождения мертвого младенца;
  • подозрения на хромосомное заболевание у новорожденного малыша;
  • подбора доноров спермы или ооцитов.

Кариотип изучают методами цитогенетики. Исследование может быть пренатальным, когда речь идет о наборе хромосом плода, и касающимся биоматериала ребенка или взрослого пациента.

Для анализа кариотипа женщины, мужчины или малыша используют хромосомы в стадии метафазы митоза. На этом этапе деления их легко наблюдать. Материал получают из лимфоцитов - источником служит периферическая кровь. Иногда берут первичную культуру кожных фибробластов или клетки костного мозга.

После забора материала переходят к трем лабораторным стадиям цитогенетического исследования. Первая называется культивированием клеток:

  • Процесс проводят в солевой питательной среде, куда добавляют цельную сыворотку, выделенную из организма крупного рогатого скота, а также белок бобовых культур. В этом веществе содержится фитогемагглютинин, который стимулирует клетки к делению.
  • Для полноценного исследования необходимо задействовать как можно больше хромосом, проходящих метафазу. Чтобы увеличить это число, за 1,5 часа до завершения культивирования в среду добавляют колхицин.
  • Первый этап анализа кариотипа человека длится около 72 часов. Затем клетки помещают в центрифугу, а после обрабатывают специальным химическим раствором. В результате разрушаются оболочка ядра и связи между хромосомами - они могут теперь свободно перемещаться в цитоплазме.
  • С помощью смеси уксусной кислоты и метанола отдельные клетки фиксируются, а полученная суспензия помещается на предметных стеклах и высушивается.

Вторая стадия анализа кариотипа организма заключается в окрашивании материала. Исходя из того, какие именно перестройки или иные нарушения предполагается выявить в ходе исследования, может быть выбрана разная методика:

  1. Рутинная или сплошная. Эту простую технологию, именуемую способом Романовского - Гимзы, с успехом применяли еще 40 лет назад. Хромосомный материал равномерно красят по всей длине специальным веществом. Метод полезен для идентификации хромосом и подсчета их числа в приготовленном препарате. Технология позволяла обнаружить синдромы, вызванные количественными изменениями структур в кариотипе человека . С этой же целью сплошной способ используют и сегодня.
  2. Для выявления перестроек хромосом необходима более точная технология. Ею стало окрашивание препарата дифференциальным методом. Участки структуры реагируют на воздействие красителя по-разному. Получаются характерные полоски, с помощью которых можно определить дефекты и изменения, индивидуальные для каждой исследуемой хромосомы. Идея метода получения детализированных изображений принадлежит ученому-цитологу из Швеции Касперссону.
  3. Сегодня специалисты в области лечения генетических заболеваний и репродукции человека предпочитают использовать дифференциальную окраску G-способом в силу его простоты и в то же время точности. Воздействуют на хромосомы по-прежнему красителем Гимзы, однако после первичной обработки трипсиновым раствором. Всего через 10 минут получают уникальный для каждой хромосомы рисунок.
  4. Более редкие методы применяют для узкоспециальных исследований. Так, R-окраска помогает выявить изменения на тех фрагментах структуры, которые не чувствительны к G-красителю. Метод, маркированный буквой C, предназначен для еще более детального анализа: направлен на изучение участков длинных плеч рядом с центромерой 1-ой, 9-ой и 16-ой хромосом.

На третьей стадии анализа кариотипа ребенка или взрослого человека окрашенные препараты исследуют с помощью светового микроскопа. Для результативной работы и уверенности в наличии или отсутствии конкретных генетических отклонений необходимо изучить не меньше 30 образцов. При подозрении на мозаичные формы патологий количество анализируемых пластинок возрастает. В этом случае берут не только лимфоциты, но и клетки тканей.

Кариотипирование в клинике NGC: революционная методика диагностики

Еще несколько лет назад исследование кариотипа, его строения и функций назначалось лишь при бесплодии и только в том случае, когда все прочие анализы были уже сделаны и не дали результатов. Сегодня ученые установили, что генетическое отклонение может быть причиной болезни в сочетании с другими причинами, усиливать их и провоцировать развитие недуга. Поэтому сегодня в передовых медицинских учреждениях в обязательном порядке выясняют, что показывает кариотип: анализ проводят в рамках комплексного обследования.

Клиника NGC стала пионером в применении революционного метода кариотипирования. Специалисты центра генетики и репродукции используют преимплантационную генетическую диагностику (ПГД), которая с точностью до 99,9 процента распознает отклонения в хромосомном наборе эмбриона.

Такой способ анализа кариотипа человека эффективен при проведении процедуры экстракорпорального оплодотворения. Ведь прежде далеко не всякая имплантация эмбриона в чрево биологической или суррогатной мамы заканчивалась успешной беременностью. Теперь вероятность долгожданного положительного результата увеличена до 74%. Этого удается достичь благодаря исключению нежизнеспособных эмбрионов. Количество процедур ЭКО, которые не принесли эффекта, значительно снижается. При этом:

  • Сокращается срок применения гормоносодержащих препаратов для стимуляции. Воздействие медикаментов на женский организм становится более щадящим.
  • Полностью исчезает опасность передать ребенку наследственные заболевания, поскольку для имплантации выбирают только те эмбрионы, которые не затронула генетическая аномалия.
  • Исключается рождение малыша с тяжелыми хромосомными отклонениями.

Технологию NGS для исследования кариотипа организма на преимплантационной стадии клиника NGC внедрила одной из первой в России и СНГ. Специалисты учреждения применяют способ с 2015 года. Новыми возможностями пациенты могут воспользоваться благодаря высокому профессионализму врачей и уникальному секвенатору MiSeqDx, прошедшему регистрацию в FDA.

Вспомогательные репродуктивные технологии как способ преодолеть отклонения в кариотипе женщины или мужчины

На современном этапе повреждения в кариотипе мужчины или женщины перестали быть непреодолимым препятствием к тому, чтобы воспитывать родного ребенка. На помощь приходят новейшие достижения: использование донорского материала, а также программа суррогатного материнства.

Сегодня клиника NGC предлагает:

  • Весь спектр медико-генетических исследований кариотипа человека как традиционными методами, так и с применением передовых методик при проведении ЭКО.
  • Возможность подобрать донора, подходящего по всем кариотипическим параметрам. Сделать это нетрудно уже в день обращения.
  • Разработку плана лечения строго с учетом индивидуальных особенностей пациентки или пары.
  • Внимательное отношение квалифицированного персонала и комфортные условия в специализированной клинике.

Главный принцип нашей работы - обеспечить максимальный результат и здоровое будущее родителям и малышу, который обязательно появится, если в это верить.