Инвестор может воспользоваться одним из методов минимизации рисков. Оценка финансовых операций в условиях неопределённости. Определение и сущность риска Распределения вероятностей и ожидаемая доходность

Рассмотрим классическую схему принятия решений в условиях неопределённости.

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку, и цель проведения которой заключается в максимизации дохода – разности между конечной и начальной оценками. Почти всегда финансовые операции проводятся в условиях неопределённости и поэтому их результат невозможно предсказать заранее. Проводящий операцию называется ЛПР – Лицо, Принимающее Решение (во многих случаях ЛПР – это инвестор). Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Задача. Рассмотрим 3 операции с одним и тем же множеством двух исходов – альтернатив А и В, которые характеризуют доходы, получаемые ЛПР.

Все 3 операции рискованные. Для 1-ой и 2-ой это очевидно, но почему считается рискованной 3-я операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы 3-ей операции, видим, что можем получить доход в размере 20 ед., поэтому возможность получения дохода в 15 ед. рассматривается как неудача, как риск недополучить 5 ед. дохода.

Как оценить финансовую операцию с точки зрения её доходности и риска? На этот вопрос не так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

Матрицы последствий и рисков. Пусть рассматривается вопрос о проведении финансовой операции, имеющей несколько возможных исходов. В связи с этим проводится анализ возможных решений и их последствий. Предположим, что ЛПР рассматривает m возможных решений: i = 1,…, m . Ситуация неопределённа, известно лишь, что имеет место один из n вариантов: j = 1,…, n . Если будет принято i -тое решение, а ситуация сложится j -тая, то доход, полученный ЛПР будет равен q ij . Матрица Q = (q ij ) называется матрицей последствий (возможных решений ). Какое же решение нужно принять ЛПР? В этой неопределённой ситуации могут быть высказаны лишь некоторые рекомендации. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме? Допустим, мы хотим оценить риск, который несёт i -тое решение. Нам неизвестна реальная ситуация, но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -тая, то принимается решение, дающее доход . Значит, принимаяi -тое решение, мы рискуем получить не , а толькоq ij , т.е. принятие i -того решения несёт риск недобрать . МатрицуR = () называютматрицей рисков .

Задача. Пусть есть матрица последствий:.

Составим матрицу рисков:.

Ситуация полной неопределённости характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма ). Если руководствоваться этим критерием, надо всегда ориентироваться на худшие условия, зная наверняка, что «хуже этого не будет». Рассматривая i -тое решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: . Теперь выберем решениеi 0 с наибольшим :. В задаче имеемИз этих чисел находим максимальное – 3. Правило Вальда рекомендует принять 3-е решение. Очевидно, такой подход – «перестраховочный», естественный для того, кто очень боится проиграть.

Правило Сэвиджа (правило минимального риска ). Этот критерий тоже крайне пессимистический, но при выборе оптимальной стратегии советует ориентироваться не на величину дохода, а на риск. При применении этого правила анализируется матрица рисков R = ().Рассматриваяi -тое решение, будем полагать, что на самом деле складывается ситуация максимального риска . Теперь выберем решениеi 0 с наименьшим :. В задаче имеемВ задаче имеемИз этих чисел находим минимальное – 5. Правило Сэвиджа рекомендует принять 3-е решение. Сущность такого подхода в том, чтобы всячески избегать большого риска при принятии решения.

Правило Гурвица (пессимизма-оптимизма ). Этот критерий рекомендует при выборе решения не руководствоваться ни крайним пессимизмом, ни крайним оптимизмом. Принимается решение, при котором достигается максимум , где- «коэффициент пессимимзма». Значениевыбирается из субъективных соображений. Еслиприближается к 1, правило Гурвица приближается к правилу Вальда, при приближениик 0 правило Гурвица приближается к правилу «крайнего оптимизма», рекомендующему выбирать ту стратегию, при которой выигрыш в строке максимален. В задаче прикритерий Гурвица рекомендует 2-ое решение.

Предположим, что в рассматриваемой схеме известны вероятности того, что реальная ситуация развивается по вариантуj . Такое положение называется частичной неопределённостью . Какие рекомендации по принятию решения в этом случае? Можно руководствоваться одним из следующих правил.

Правило максимизации среднего ожидаемого дохода. Доход, получаемый компанией при реализации i -ого решения, является случайной величиной с законом распределения

q i1

q i2

q in

Математическое ожидание этой случайной величины и есть средний ожидаемый доход. Критерий рекомендует принять решение, максимизирующее средний ожидаемый доход.

Задача. Пусть в предыдущей задаче ТогдаМаксимальный средний ожидаемый доход равен 7, что соответствует 3-ему решению.

Правило минимизации среднего ожидаемого риска. Риск компании при реализации i -ого решения является случайной величиной с законом распределения

r i1

r i2

r in

Математическое ожидание этой случайной величины и есть средний ожидаемый риск. Критерий рекомендует принять решение, минимизирующее средний ожидаемый риск.

Предположим, что ЛПР (лицо, принимающее решения) рассматривает несколько возможных решений: i = 1,…,m. Ситуация, в которой действует ЛПР, является неопределенной. Известно лишь, что наличествует какой-то из вариантов: j = 1,…, n. Если будет принято i -e решение, а ситуация есть j -я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет i -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть j -я, то было бы принято решение, дающее доход q ij .
Значит, принимая i -e решение мы рискуем получить не q j , а только q ij , значит принятие i -го решения несет риск недобрать r ij = q j - q ij . Матрица R = (r ij) называется матрицей рисков.

Пример №1 . Пусть матрица последствий есть
Составим матрицу рисков. Имеем q 1 = max(q i 1) = 8, q 2 = 5, q 3 = 8, q 4 = 12.. Следовательно, матрица рисков есть

Принятие решений в условиях полной неопределенности

Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма). Рассматривая i -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход a i Но теперь уж выберем решение i 0 с наибольшим a i0 . Итак, правило Вальда рекомендует принять решение i0 , такое что
Так, в вышеуказанном примере, имеем a 1 = 2, a 2 = 2, a 3 = 3, a 4 = 1. Из этих чисел максимальным является число 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков R = (rij) . Рассматривая i -e решение будем полагать, что на самом деле складывается ситуация максимального риска b i = max
Но теперь уж выберем решение i 0 с наименьшим b i0 . Итак, правило Сэвиджа рекомендует принять решение i 0 , такое что
В рассматриваемом примере имеем b 1 = 8, b 2 = 6, b 3 = 5, b 4 = 7 . Минимальным из этих чисел является число 5. Т.е. правило Сэвиджа рекомендует принять 3-е решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i , на котором достигается максимум
, где 0 ≤ λ ≤ 1 .
Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0, правило Гурвица приближается к правилу "розового оптимизма" (догадайтесь сами, что это значит). В вышеуказанном примере при λ = 1/2 правило Гурвица рекомендует 2-е решение.

Принятие решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.
Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Qi с рядом распределения

qi1

qi2


qin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый доход, обозначаемый . Правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.
Предположим, что в схеме из предыдущего примера вероятности есть (1/2, 1/6, 1/6, 1/6). Тогда Q 1 =29/6, Q 2 =25/6, Q 3 =7, Q 4 =17/6. Максимальный средний ожидаемый доход равен 7, соответствует третьему решению.
Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации i -го решения, является случайной величиной R i с рядом распределения

ri1

ri2


rin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также R i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.
Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем R 1 =20/6, R 2 =4, R 3 =7/6, R 4 =32/5. Минимальный средний ожидаемый риск равен 7/6, соответствует третьему решению.
Анализ принимаемых решений по двум критериям: среднему ожидаемому доходу и среднему ожидаемому риску и нахождение решений, оптимальных по Парето, аналогично анализу доходности и риска финансовых операций. В примере множество решений, оптимальных по Парето операций, состоит только из одного 3-его решения.
В случае, если количество Парето-оптимальных решений больше одного, то для определения лучшего решения применяется взвешивающая формула f(Q)=2Q -R .

Правило Лапласа

Иногда в условиях полной неопределенности применяют правило Лапласа, согласно которому все вероятности p j считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

Пример №2 . Рассмотрим пример решения статистической игры в экономической задаче.
Сельскохозяйственное предприятие может реализовать некоторую продукцию:
А1) сразу после уборки;
А2) в зимние месяцы;
А3) в весенние месяцы.
Прибыль зависит от цены реализации в данный период времени, затратами на хранение и возможных потерь. Размер прибыли, рассчитанный для разных состояний-соотношений дохода и издержек (S1, S2 и S3), в течение всего периода реализации, представлен в виде матрицы (млн. руб.)

S1 S2 S3
A1 2 -3 7
A2 -1 5 4
A3 -7 13 -3
Определить наиболее выгодную стратегию по всем критериям (критерий Байеса, критерий Лапласа, максиминный критерий Вальда, критерий пессимизма-оптимизма Гурвица, критерий Ходжа-Лемана, критерий минимаксного риска Сэвиджа), если вероятности состояний спроса: 0,2; 0,5; 0,3; коэффициент пессимизма С = 0,4; коэффициент достоверности информации о состояниях спроса u = 0,6.
Решение
Результаты расчетов будем заносить в таблицу:
S1 S2 S3 Б НО ММ П-О Х-Л
А1 2 -3 7 1 2 -3 3 -0,6
А2 -1 5 4 3,5 2,7 -1 2,6 1,7
А3 -7 13 -3 4,2 1 -7 5 -0,28
p j 0,2 0,5 0,3 А3 А2 А2 А3 А2

1. Критерий Байеса (максимального математического ожидания)

Расчет осуществляется по формуле:
;
W 1 = 2∙0,2 + (-3) ∙0,5 + 7∙0,3 = 0,4 – 1,5 + 2,1 = 1
W 2 = -1∙0,2 + 5 ∙0,5 + 4∙0,3 = -0,2 + 2,5 + 1,2 = 3,5
W 3 = -7∙0,2 + 13 ∙0,5 + (-3)∙0,3 = -1,2 + 6,5 - 0,9 = 4,2
Найденные значения заносим в первый столбец (Б) и выбираем максимальное
W = max{1;3.5;4.2} = 4.2,

значит оптимальной по данному критерию является стратегия А3 – продавать в весенние месяцы.

2. Критерий недостаточного основания Лапласа (НО)

Находим среднее значение элементов каждой строки:
.
;
;
.
Найденные значения заносим во второй столбец (НО) и выбираем максимальное W = max{2; 2.7; 1} = 2.7, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

3. Максиминный критерий Вальда (ММ)

В каждой строке находим минимальный элемент: .
W 1 = min{2; -3; 7} = -3
W 2 = min{-1; 5; 4} = -1
W 3 = min{-7; 13; -3} = -7
Найденные значения заносим в третий столбец (ММ) и выбираем максимальное W= max{-3; -1; 7} = -1, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

4. Критерий пессимизма-оптимизма Гурвица (П-О)

Для каждой строки рассчитываем значение критерия по формуле: . По условию C = 0.4, значит:
W 1 = 0,4∙min{2; -3; 7} + (1-0,4) ∙ max{2; -3; 7} = 0,4∙(-3) + 0,6∙7 = -1,2 + 4,2 = 3
W 2 = 0,4∙min{-1; 5; 4} + (1-0,4) ∙ max{-1; 5; 4} = 0,4∙(-1) + 0,6∙5 = -0,4 + 3 = 2,6
W 3 = 0,4∙min{-7; 13; -3} + (1-0,4) ∙ max{-7; 13; -3} = 0,4∙(-7) + 0,6∙13 = -2,8 + 7,2 = 5
Найденные значения заносим в четвертый столбец (П-О) и выбираем максимальное W = max{3; 2.6 5} = 5, значит оптимальной по данному критерию является стратегия А3 – продавать в весенние месяцы.

5. Критерий Ходжа-Лемана (Х-Л)

Для каждой строки рассчитываем значение критерия по формуле: . По условию u = 0.6 и множители в каждом слагаемом уже рассчитаны, их можно взять их первого столбика (Б) и из третьего столбика (ММ), значит:
W 1 = 0,6∙1 + (1-0,6) ∙(-3) = 0,6 – 1,2 = -0,6
W 2 = 0,6∙3,5 + (1-0,6) ∙(-1) = 2,1 – 0,4 = 1,7
W 3 = 0,6∙4,2 + (1-0,6) ∙(-7) = 2,52 – 2,8 = -0,28
Найденные значения заносим в пятый столбец (Х-Л) и выбираем максимальное W = max{-0.6; 1.7; -0.28} = 1.7, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

5. Критерий минимаксного риска Сэвиджа

Рассчитаем матрицу рисков. Заполнять ее лучше по столбцам. В каждом столбце находим максимальный элемент и вы читаем из него все остальные элементы столбца, результаты записываем на соответствующих местах.
Вот как рассчитывается первый столбец. Максимальный элемент в первом столбце: a 11 = 2, значит по формуле :
r 11 = 2 – a 11 = 2 -2 = 0
r 21 = 2 – a 21 = 2 –(-1) = 3
r 31 = 2 – a 31 = 2 –(-7) = 9
Рассчитаем второй столбец матрицы рисков. Максимальный элемент во втором столбце: a 32 = 13, значит:
r 12 = 13 – a 12 = 13 –(-3) = 16
r 22 = 13 – a 22 = 13 –5 = 8
r 32 = 13 – a 32 = 13 –13 = 0
Рассчитаем третий столбец матрицы рисков. Максимальный элемент в третьем столбце: a 13 = 7, значит:
r 13 = 7 – a 13 = 7 –7 = 0
r 23 = 7 – a 23 = 7 –4 = 3
r 33 = 7 – a 33 = 7 –(-3) = 10
Таким образом, матрица рисков имеет вид (в каждом столбце на месте максимального элемента платежной матрицы должен стоять ноль):
W i
0 16 0 16
3 8 3 8
9 0 10 10
Дополним матрицу рисков рассчитанными значениями критерия W i – в каждой строке выбираем максимальный элемент ():
W 1 = max{0; 16; 0} = 16
W 2 = max{3; 8; 3} = 8
W 3 = max{9; 0; 10} = 10
Найденные значения заносим в столбец (W i) и выбираем минимальное W = min{16,8,10} = 8, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

Вывод:

  1. Стратегия А1 (продавать сразу после уборки) не является оптимальной ни по одному из критериев.
  2. Стратегия А2 (продавать в зимние месяцы) является оптимальной согласно критериям недостаточного основания Лапласа, максиминного критерия Вальда и минимаксного критерия Сэвиджа.
  3. Стратегия А3 (продавать в весенние месяцы) является оптимальной согласно критериям Байеса, пессимизма-оптимизма Гурвица, Ходжа-Лемана.

Пример №2 . В обычной стратегической игре каждый игрок предпринимает именно те действия, которые наиболее выгодны ему и менее выгодны противнику. При этом предполагается, что игроки – разумные и антагонистические противники. Однако очень часто присутствует неопределенность, которая не связана с сознательным противодействием противника, а зависит от некоторой объективной действительности.
Сельскохозяйственное предприятие имеет три участка земли: влажный, средней влажности и сухой. Один из этих участков предполагается использовать для выращивания картофеля, остальные – для посева зеленой массы. Для получения хорошего урожая картофеля требуется определенное количество влаги в почве в период вегетации. При излишней влажности посаженый картофель на некоторых участках может гнить, а при недостаточном количестве осадков будет плохо развиваться, что приводит к снижению урожайности. Определить, на каком участке сеять картофель, чтобы получить хороший урожай его, если известна средняя урожайность картофеля на каждом участке в зависимости от погодных условий. На участке A 1 урожайность составляет 200, 100 и 250 ц с 1 га при выпадении соответственно нормального количества осадков, больше и меньше нормы. Аналогично на участке A 2 – 230, 120 и 200 ц, а на участке A 3 – 240, 260 и 100 ц.
Используем игровой подход. С/х предприятие – игрок A , у которого три стратегии: A 1 – сеять картофель на влажном участке, A 2 – на участке средней влажности, A 3 – на сухом участке. Игрок П – природа, у которого три стратегии: П 1 соответствует количеству осадков меньше нормы, П 2 – норме, П 3 – больше нормы. Выигрыш с/х предприятия при каждой паре стратегий (A i , П j ) задается урожайностью картофеля с 1 га.

П
A
П 1 П 2 П 3
A 1 250 200 100
A 2 200 230 120
A 3 100 240 260
Рассмотрим общую ситуацию, когда какой-то стороне необходимо выполнить операцию в недостаточно известной обстановке. О состоянии этой обстановки можно сделать n предположений: П 1 , П 2 ,…, П n . Например, покупательский спрос. По аналогии с примером 8 эти состояния рассматривают как стратегии природы. В теории статистических игр природа не является разумным игроком, она рассматривается как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Ее возможные состояния реализуются случайным образом. Такие ситуации принято называть играми с природой. Оперирующая сторона A в своем распоряжении имеет m возможных стратегий: A 1 , A 2 ,…, A m . Выигрыши игрока A при каждой паре стратегий A i и П j предполагаются известными a ij .
Может показаться, что игра с природой проще стратегической игры, поскольку природа не противодействует игроку A . На самом деле это не так, поскольку в неопределенной ситуации труднее принять обоснованное решение. Хотя выиграет A , скорее всего, больше, чем в игре против сознательного противника.

Пример 9. Фирма производит пользующиеся спросом детские платья и костюмы, реализация которых зависит от состояния погоды. Затраты фирмы в течение августа-сентября на единицу продукции составили: платья – 7 ден. ед., костюмы – 28 ден. ед. Цена реализации составляет 15 и 50 ден. ед. соответственно. По данным наблюдений за несколько предыдущих лет, фирма может реализовать в условиях теплой погоды 1 950 платьев и 610 костюмов, а при прохладной погоде – 630 платьев и 1 050 костюмов.
Составить платежную матрицу.
Решение. У фирмы две стратегии: A 1 : выпустить продукцию, считая, что погода будет теплой; A 2 : выпустить продукцию, считая, что погода будет прохладной.
У природы две стратегии: B 1 : погода теплая; B 2 : погода прохладная.
Найдем элементы платежной матрицы:
1) a 11 – доход фирмы при выборе стратегии A 1 при условии B 1 :
a 11 =(15-7)·1950+(50-28)·610=29020.
2) a 12 – доход фирмы при выборе A 1 при условии B 2 . Фирма выпустит 1 950 платьев, а продаст 630, доход от реализации платьев
(15-7)·630-7·(1950-630)=5040-9240
a 12 =5040-9240+22·610=9220.
3) аналогично при стратегии A 2 в условиях B 1 фирма выпустит 1 050 костюмов, а продаст 610;
a 21 =8·630+22·610-28·(1050-610)=6140
4) a 22 =8·630+22·1050=28140
Платежная матрица:

20 020 9 220
6 140 28 140

Пример 2 . Объединение производит разведку полезных ископаемых на трех месторождениях. Фонд средств объединения составляет 30 ден. ед. Деньги в первое месторождение M 1 могут быть вложены в количестве, кратном 9 ден. ед., во второе M 2 – 6 ден. ед., в третье M 3 – 15 ден. ед. Цены на полезные ископаемые в конце планового периода могут оказаться в двух состояниях: C 1 и C 2 . Эксперты установили, что в ситуации C 1 прибыль от месторождения M 1 составит 20 % от количества вложенных ден. ед. на разработку, на M 2 – 12 % и на M 3 – 15 %. В ситуации C 1 на конец планового периода прибыль составит 17 %, 15 %, 23 % на месторождениях M 1 , M 3 , M 3 соответственно.
Игрок A – объединение. Игрок П (природа) – совокупность внешних обстоятельств, которые обуславливают ту или иную прибыль на месторождениях. У игрока A имеется четыре возможности, полностью использующие имеющиеся средства. Первая стратегия, A 1 , состоит в том, что A вложит в M 1 9 ден. ед., в M 2 – 6 ден. ед., в M 3 – 15 ден. ед. Вторая стратегия A 2: в M 1 – 18 ден. ед., в M 2 – 12 ден. ед., в M 3 деньги не вкладывать. Третья стратегия, A 3: 30 ден. ед. вложить в M 3 . Четвертая стратегия, A 4:. 30 ден. ед. вложить в M 2 . Кратко можно записать A 1 (9, 6, 15), A 2 (18, 12, 0), A 3 (0, 0, 30), A 4 (0, 30, 0).
Природа может реализовать одно из двух своих состояний, характеризующихся различными ценами на полезные ископаемые в конце планового периода. Обозначим состояния природы П 1 (20 %, 12 %, 15 %), П 2 (17 %, 15 %, 23 %).
Элементы a ij платежной матрицы имеют смысл суммарной прибыли, получаемой объединением в различных ситуациях (A i , П j ) (i =1, 2, 3, 4, j = 1, 2). Например, вычислим a 12 , отвечающий ситуации (A 1 , П 2 ), т. е. случаю, когда объединение вкладывает в месторождения M 1 , M 2 , M 3 , соответственно 9 ден. ед., 6 ден. ед., 15 ден. ед., и на конец планового периода цены оказались в состоянии C 2 :
a 12 = 9·0,17+6·0,15+15·0,23 = 5,88 ден. ед.

Пример 3 . Ожидается наступление наводнения, которое может иметь категорию с первой по пятую. Величина ущерба от наводнения:

Категория наводнения 1 2 3 4 5
Ущерб, ден. ед. 5 10 13 16 20
В качестве профилактического действия можно построить дамбу; имеется пять вариантов выбора высоты дамбы: h 1 < h 2 < h 3 < h 4 < h 5 , причем дамба высоты h 1 защищает только от наводнения первой категории, высоты h 2 – от наводнения первой и второй категории, и т. д., дамба высоты h 5 защищает от наводнения любой категории.
Затраты на строительство дамбы:
Высота дамбы h 1 h 2 h 3 h 4 h 5
Затраты, ден. ед. 2 4 6 8 10
Принимающий решение имеет шесть стратегий (не строить дамбу вообще (A 0 ) или строить дамбу высоты h i (A i ), i = 1, 2, 3, 4, 5). Природа также имеет шесть стратегий (не осуществлять наводнение (П 0 ) или осуществить наводнение j -й категории (П j ), 1≤j≤5).
Получаем матрицу потерь:
П / A П 0 П 1 П 2 П 3 П 4 П 5
A 0 0 5 10 13 16 20
A 1 2 2 12 15 18 22
A 2 4 4 4 17 20 24
A 3 6 6 6 6 22 26
A 4 8 8 8 8 8 28
A 5 10 10 10 10 10 10
Например, если построить дамбу высоты h 2 , а наводнение будет третьей категории, то затраты на строительство составят 4 ден. ед., а ущерб от наводнения 13 ден. ед. Таким образом, общие потери составят 4 + 13 = 17 ден. ед. Если же наводнение будет второй категории, то ущерба от наводнения не будет, и потери связаны только со строительством дамбы, т.е. 4 ден. ед
Чтобы из матрицы потерь (b ij ) получить матрицу выигрышей, достаточно у всех элементов поменять знак и прибавить любую константу C (в данном случае C можно интерпретировать как сумму, выделенную на строительство дамбы, тогда выигрыш a ij =C-b ij представляет собой сэкономленную сумму). Например, при C =30 матрица выигрышей:
П / A П 0 П 1 П 2 П 3 П 4 П 5
A 0 30 25 20 17 14 10
A 1 28 28 18 15 12 8
A 2 26 26 26 13 10 6
A 3 24 24 24 24 8 4
A 4 22 22 22 22 22 2
A 5 20 20 20 20 20 20

Игры с "природой"

Термин "природа" в теории игр понимается в широком смысле . Это могут быть действительные природные физические (климатические), биологические, химические, социальные и т.п. процессы, которые сопровождают экономическую деятельность. Под "природой" может также пониматься рынок, противостоящий предпринимателю, конкурирующая среда, монополия и т.п. "Природа" может выступать как антагонистическая сторона, а может как кооперативная среда. "Природа" в виде природных процессов, как часть экономики, не стремиться "специально" навредить предпринимателю, но она несёт определённый урон от его экономической деятельности и этот "проигрыш"для неё должен быть минимален , если, вообще, без него для окружающей среды нельзя обойтись. Игрок A в таких играх - это экономические субъекты, а игрок B - это "природа". Откуда средства у физической "природы"? Проигрыш игрока B, физической "природы", должен компенсироваться из вне, например, государственными дотациями либо заложенными в инвестиционные проекты средствами на возобновление природных ресурсов. Знание оптимальных стратегий "природы" позволяет определить наиболее неблагоприятные условия для игрока A (предпринимателя), которые его ожидают ("надейся на лучшее, но готовься к худшему"), и оценить необходимые ресурсы на восстановление природных ресурсов, дающих ему возможность получить гарантированный доход.
Если "природа" подразумевает конкурентную среду - то проигрыш второго игрока есть цена борьбы с конкурентами на рынке.
Перейдём к примерам содержательных постановок задач игры с "природой".
1. Антагонистические игры
Пример 1. (Планирование посевов) . Фермер, имеющий ограниченный участок земельных угодий, может его засадить тремя различными культурами A 1, A 2, A 3 . Урожай этих культур зависит главным образом от погоды ("природы"), которая может находиться в трёх различных состояниях: B 1 , B 2 , B 3 . Фермер имеет информацию (статистические данные) о средней урожайности этих культур (количество центнеров культуры, получаемого в одного гектара земли) при трёх различных состояниях погоды, которая отражена в таблице: Тогда матрица доходов (платёжная матрица) фермера A имеет вид:

Элемент матрицы A - (a ij) показывает, какой доход может получить фермер с одного гектара земли, если он посеет культуру i ( i =1, 2, 3), а погода будет находиться в состоянии j (j = 1, 2, 3).
Необходимо определить пропорции, в которых фермер должен засеять имеющийся участок земли, чтобы получить максимальный гарантированный доход вне зависимости от того, какие погодные условия будут реализованы.
Данная задача может быть сведена к антагонистической игре. В данном случае в качестве первого игрока выступает фермер, а в качестве второго игрока - природа. Будем предполагать, что природа, как игрок, может вести себя таким образом, чтобы максимально навредить фермеру, преследуя тем самым противоположные интересы (эти предположения позволяют оценить тот доход, который он может получить в том случае, если погодные условия будут для него максимально неблагоприятные). В этом случае фермер имеет в своём распоряжении три чистые стратегии:
  • первая чистая стратегия предполагает, что весь участок земли буде засеян культурой A 1 ;
  • вторая чистая стратегия предполагает, что весь участок земли будет засеян культурой A 2 ;
  • третья чистая стратегия предполагает, что весь участок будет засеян культурой A 3 .
Как игрок, природа может также использовать три возможные стратегии:
  • засушливую погоду, которая соответствует первой чистой стратегии B 1 ;
  • нормальную погоду, которая соответствует второй чистой стратегии B 2 ;
  • дождливую погоду, которая соответствует третьей чистой стратегии B 3 .
Решение



2. Проверим, имеет ли данная игра седловую точку.

V * =max i min j a ij = 50.
V * =min j max i a ij = 100.

3. Решение игры следует искать в смешанных стратегиях. Сведём игровую задачу к задаче линейного программирования. Если первый игрок - фермер - применяет свою оптимальную смешанную стратегию P * , а второй игрок - природа - применяет последовательно свои чистые стратегии, то математическое ожидание дохода, который фермер может получить со своего участка, будет не меньше цены игры V.


.


Разделим равенство:
p* 1 + p* 2 + p* 3 = 1
на V, получим, что новые переменные y 1 , y 2 , y 3 удовлетворяют условию:
y 1 + y 2 + y 3 = 1/V
Поскольку цель первого игрока - максимизация его выигрыша , а математическое ожидание его выигрыша не меньше цены игры , то первый игрок будет стремиться максимизировать цену игры, которая эквивалентна минимизации величины 1/V.
Итак, для первого игрока (фермера) задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
найти минимум функции F = y 1 + y 2 + y 3


и прямых ограничениях:
y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0
Переходим ко второму игроку, к природе. Если второй игрок - природа - будет применять свою оптимальную смешанную стратегию Q * ,а первый игрок - фермер будет последовательно применять свои чистые стратегии, то математическое ожидание проигрыша второго игрока будет не больше цены игры. Следовательно, должна выполняться следующая система неравенств:

Разделим каждое из неравенств, входящих в систему на V и введём новые переменные:
.
В результате получим новую систему неравенств:

Разделим равенство:
q* 1 + q* 2 + q* 3 = 1
на V, получим, что новые переменные q 1 , q 2 , q 3 удовлетворяют условию:
q 1 + q 2 + q 3 = 1/V
Поскольку цель второго игрока - природы - минимизация его проигрыша , а математическое ожидание его проигрыша не больше цены игры , то второй игрок будет стремиться минимизировать цену игры, которая эквивалентна максимизации величины 1/V.
Итак, для второго игрока (природы) задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
найти максимум функции F / = x 1 + x 2 + x 3
при следующих функциональных ограничениях:

и прямых ограничениях:
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0
Таким образом, для того чтобы найти оптимальную смешенную стратегию второго игрока, необходимо также решить задачу линейного программирования.
Задачи обоих игроков свелись к паре двойственных задач линейного программирования:
Задача второго игрока минимизация проигрыша V Задача первого игрока максимизация выигрыша V
Целевая функция
F / = x 1 +x 2 +x 3 = → max F = y 1 +y 2 +y 3 = → min
Функциональные ограничения


Прямые ограничения

x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0

y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0

Задача первого игрока решается симплекс-методом . Результаты счёта:
Выводы . В соответствии с полученными результатами фермеру гарантирован средний доход в размере 66,67 единиц с каждого гектара используемой под культурами земли при самых неблагоприятных условиях. Оптимальная стратегия для него - выращивание двух культур, A 1 и A 3 , причём, под первую культуру ему следует отвести 0,67 часть всей земли , а под третью культуру 0,33 часть всей земли .
Природа "грозит" фермеру жарой 0,33 часть сезона возделывания культур и 0,67 часть сезона дождями.

Пример . Планирование выпуска продукции при разных состояниях природы - рынка спроса.
Предприятие может выпускать 4 вида продукции: A 1 , A 2 , A 3 , A 4 , получая при этом прибыль. Её величина определяется состоянием спроса (природой рынка), который может находиться в одном из четырёх возможных состояний: B 1 , B 2 , B 3 , B 4 . Зависимость величины прибыли от вида продукции и состояния рынка представлено в таблице:

Виды продукции Возможные состояния рынка спроса
B 1 B 2 B 3 B 4
A 1 4 3 5 6
A 2 2 6 1 5
A 3 3 0 7 2
A 4 3 5 1 3

Платёжная матрица имеет вид:

Элемент матрицы A - {a ij } характеризует, какую прибыль может получить предприятие, если оно будет выпускать i - й вид продукции(i =1, 2, 3, 4) при j-м спросе(j = 1, 2, 3, 4).
Необходимо определить оптимальные пропорции выпускаемых предприятием видов продукции, продажа которой обеспечила бы ему максимально возможную выручку вне зависимости от того, какое состояние спроса будет реализовано
Эта задача может быть сведена к антагонистической игре.
В данном случае в качестве первого игрока выступает предприятие , а в качестве второго игрока - природа , которая влияет на состояние спроса и может сделать его максимально неблагоприятным для предприятия. Будем предполагать, что природа, как игрок, будет вести себя таким образом, чтобы максимально навредить предприятию, преследуя тем самым противоположные интересы.
В этом случае конфликт двух сторон может характеризоваться, как антагонистический, а использование модели этого конфликта позволяет предприятию. оценить выручку, которую оно может получить вне зависимости от того, какое состояние спроса будет реализовано.
Выступая в качестве первого игрока , предприятие может использовать четыре стратегии:
· первую чистую стратегию, соответствующую выпуску предприятием только продукции A 1
· вторую чистую стратегию, соответствующую выпуску предприятием только продукции A 2
· третью чистую стратегию, соответствующую выпуску предприятием только продукции A 3
· четвёртую чистую стратегию, соответствующую выпуску предприятием только продукции A 4
Выступая в качестве второго игрока , природа может использовать также четыре стратегии:
· первую чистую стратегию, при которой реализуется состояние спроса B 1 ;
· вторую чистую стратегию, при которой реализуется состояние спроса B 2 ;
· третью чистую стратегию, при которой реализуется состояние спроса B 3 ;
· четвёртую чистую стратегию, при которой реализуется состояние спроса B 4 .
Решение
1. Проанализируем платёжную матрицу A.

Матрица A не имеет доминируемых стратегий и не может быть упрощена.
2. Проверим, имеет ли данная игра седловую точку .
Найдём нижнюю и верхнюю цену игры:
V * =max i min j a ij = 3.
V * =min j max i a ij = 4.
Поскольку V * ≠V * , то данная антагонистическая игра не имеет седловой точки и решения в чистых стратегиях.
Решение игры следует искать в смешанных стратегиях. Сведём рассматриваемый антагонистический конфликт к прямой и двойственной задаче линейного программирования.
Если первый игрок - предприятие - применяет свою оптимальную смешанную стратегию P * , а второй игрок - природа - применяет последовательно свои чистые стратегии , то математическое ожидание дохода , который предприятие может получить, будет не меньше цены игры V .
И наоборот, если второй игрок - природа - будет применять свою оптимальную смешанную стратегию Q * , а первый игрок - предприятие будет последовательно применять свои чистые стратегии , то математическое ожидание проигрыша второго игрока будет не больше цены игры . Следовательно, должна выполняться следующая система неравенств:
Задача второго игрока минимизация проигрыша V Задача первого игрока максимизация выигрыша V
Целевая функция
F / = x 1 +x 2 +x 3 +x 4 =→ max F = y 1 +y 2 +y 3 +y 4 =→ min
Функциональные ограничения


Прямые ограничения

x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0

y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0, y 4 ≥ 0
Применяя симплекс-метод для решения задачи первого игрока , получим:
Y * = (y 1 * = 0,182; y 2 * = 0; y 3 * = 0; y 4 * =0,091)
F= y 1 * + y 2 * + y 3 * +y 4 * = 0,273
Из соотношения y 1 * + y 2 * + y 3 * +y 4 * =1/V найдём V:

Из соотношений:

Найдём:
p* 1 = y* 1 V = 0,67 , p* 2 = y* 2 V = 0 , p* 3 = y* 3 V = 0 , p* 4 = y* 4 V =0,33

Окончательно имеем:
Р * = (р * 1 =0,67; р * 2 = 0; р * 3 =0; р * 4 = 0,33), V = 3.67
На основании решения, найденного для двойственной задачи линейного программирования, найдём решение исходной задачи - задачи второго игрока:
X * = (x 1 * = 0,121; x 2 * =0,121; x 3 * = 0,03; x 4 * = 0)
F / = x 1 * + x 2 * + x 3 * +x 4 * = 0,273
Из соотношения x 1 * + x 2 * + x 3 * +x 4 * = 1/V найдём V:

Из соотношений:

Найдём:
q* 1 = x* 1 V = 0,445 , q* 2 = x* 2 V = 0,444 , q* 3 = x* 3 V = 0,111 , q* 4 = x* 4 V = 0.
Окончательно имеем:
Q * = (q * 1 = 0,445; q * 2 =0,444; q * 3 = 0,111; q * 4 = 0), V = 3.67

Пример . Фирма планирует реализацию своей продукции на рынках, учитывая возможные варианты покупательского спроса П j , j=1,4 (низкий, средний, высокий, очень высокий). На предприятии разработано три стратегии сбыта товаров A 1 , А 2 , А 3 . Объем товарооборота (ден.ед.), зависящий от стратегии и покупательского спроса, представлен в таблице.

А j П j
П 1 П 2 П 3 П 4
А 1 30 +N 10 20 25 + N/2
А 2 50 70 - N 10 + N/2 25
А 3 25 – N/2 35 40 60 - N/2
где N=3

Решение находим с помощью калькулятора .
Критерий Байеса .
По критерию Байеса за оптимальные принимается та стратегия (чистая) A i , при которой максимизируется средний выигрыш a или минимизируется средний риск r.
Считаем значения ∑(a ij p j)
∑(a 1,j p j) = 33 0.3 + 10 0.2 + 20 0.4 + 26.5 0.1 = 22.55
∑(a 2,j p j) = 50 0.3 + 67 0.2 + 11.5 0.4 + 25 0.1 = 35.5
∑(a 3,j p j) = 23.5 0.3 + 35 0.2 + 40 0.4 + 58.5 0.1 = 35.9

A i П 1 П 2 П 3 П 4 ∑(a ij p j)
A 1 9.9 2 8 2.65 22.55
A 2 15 13.4 4.6 2.5 35.5
A 3 7.05 7 16 5.85 35.9
p j 0.3 0.2 0.4 0.1

Критерий Лапласа .
Если вероятности состояний природы правдоподобны, для их оценки используют принцип недостаточного основания Лапласа, согласно которого все состояния природы полагаются равновероятными, т.е.:
q 1 = q 2 = ... = q n = 1/n.
q i = 1/4
A i П 1 П 2 П 3 П 4 ∑(a ij)
A 1 8.25 2.5 5 6.63 22.38
A 2 12.5 16.75 2.88 6.25 38.38
A 3 5.88 8.75 10 14.63 39.25
p j 0.25 0.25 0.25 0.25
Вывод: выбираем стратегию N=3.
Критерий Вальда .
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min a ij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
A i П 1 П 2 П 3 П 4 min(a ij)
A 1 33 10 20 26.5 10
A 2 50 67 11.5 25 11.5
A 3 23.5 35 40 58.5 23.5
Вывод: выбираем стратегию N=3.
Критерий Севиджа .
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max r ij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце b j = max(a ij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r 11 = 50 - 33 = 17; r 21 = 50 - 50 = 0; r 31 = 50 - 23.5 = 26.5;
2. Рассчитываем 2-й столбец матрицы рисков.
r 12 = 67 - 10 = 57; r 22 = 67 - 67 = 0; r 32 = 67 - 35 = 32;
3. Рассчитываем 3-й столбец матрицы рисков.
r 13 = 40 - 20 = 20; r 23 = 40 - 11.5 = 28.5; r 33 = 40 - 40 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r 14 = 58.5 - 26.5 = 32; r 24 = 58.5 - 25 = 33.5; r 34 = 58.5 - 58.5 = 0;
A i П 1 П 2 П 3 П 4
A 1 17 57 20 32
A 2 0 0 28.5 33.5
A 3 26.5 32 0 0

A i П 1 П 2 П 3 П 4 max(a ij)
A 1 17 57 20 32 57
A 2 0 0 28.5 33.5 33.5
A 3 26.5 32 0 0 32
Вывод: выбираем стратегию N=3.
Критерий Гурвица .
Критерий Гурвица является критерием пессимизма - оптимизма. За (оптимальную принимается та стратегия, для которой выполняется соотношение:
max(s i)
где s i = y min(a ij) + (1-y)max(a ij)
При y = 1 получим критерий Вальде, при y = 0 получим – оптимистический критерий (максимакс).
Критерий Гурвица учитывает возможность как наихудшего, так и наилучшего для человека поведения природы. Как выбирается y? Чем хуже последствия ошибочных решений, тем больше желание застраховаться от ошибок, тем y ближе к 1.
Рассчитываем s i .
s 1 = 0.5 10+(1-0.5) 33 = 21.5
s 2 = 0.5 11.5+(1-0.5) 67 = 39.25
s 3 = 0.5 23.5+(1-0.5) 58.5 = 41
A i П 1 П 2 П 3 П 4 min(a ij) max(a ij) y min(a ij) + (1-y)max(a ij)
A 1 33 10 20 26.5 10 33 21.5
A 2 50 67 11.5 25 11.5 67 39.25
A 3 23.5 35 40 58.5 23.5 58.5 41
Вывод: выбираем стратегию N=3.
Таким образом, в результате решения статистической игры по различным критериям чаще других рекомендовалась стратегия A 3 .

Руководство компании принимает решение о размещении производства нового продукта в некотором месте. Чтобы сформировать представление о ситуации на рынке нового продукта на момент освоения производства, ему необходимо учесть затраты на доставку готовой продукции до потребителя, развитость транспортной и социальной инфраструктуры региона, конкуренцию на рынке, соотношение спроса и предложения, курсы валют и многое другое. Возможные варианты решений, инвестиционная привлекательность которых определяется как процент прироста дохода по отношению к сумме капитальных вложений, представлены в таблице.
Выбрать:
1) место для размещения производства, если руководитель предприятия уверен в том, что на рынке сложится ситуация 4;
2) место для размещения производства, если руководство оценивает вероятность ситуации 1 в 0,2; ситуации 2 в 0,1; ситуации 3 в 0,25;
3) провести выбор варианта в условиях неопределенности по критерию: максимакс, максимин, критерий Лапласа, критерий Сэведжа, критерий Гурвица (y = 0,3);
4) изменится ли наилучший вариант решения по критерию Гурвица если величину a увеличить до 0,5?
5) предположив, что данные таблицы представляют затраты предприятия, определить выбор, который сделает предприятие при использовании каждого из следующих критериев: максимин; максимакс; критерий Гурвица(? = 0,3); критерий Сэведжа; критерий Лапласа

Типовые задания

  1. Выбрать оптимальный проект для строительства используя критерии Лапласа, Вальда, максимального оптимизма, Сэвиджа и Гурвица при a=0.58. Матрица затрат имеет вид:
    0.07 0.26 0.11 0.25 0.1 0.21
    68 45 54 79 47 99
    56 89 42 56 74 81
    72 87 56 40 62 42
    65 48 75 89 52 80
    69 93 93 56 45 43
    73 94 79 68 67 46
    66 100 64 89 94 49
    70 42 97 42 42 50
  2. Розничное торговое, предприятие разработало несколько вариантов плана продажи товаров на предстоящей ярмарке с учетом меняющейся конъюнктуры рынка и спроса покупателей, получающиеся от их возможных сочетаний величины прибыли представлены в виде матрицы выигрышей. Определить оптимальный план продажи товаров.
    x=0,7
  3. Фирма планирует реализацию своей продукции на рынках, учитывая возможные варианты покупательского спроса Пj, j=1͞,4͞ (низкий, средний, высокий, очень высокий). На предприятии разработано три стратегии сбыта товаров A 1 , А 2 , А 3 . Объем товарооборота (ден.ед.), зависящий от стратегии и покупательского спроса, представлен в таблице.
    А j П j
    П 1 П 2 П 3 П 4
    А 1 30 +N 10 20 25 + N/2
    А 2 50 70 - N 10 + N/2 25
    А 3 25 – N/2 35 40 60 - N

    Где N=3
    Известны возможные состояния покупательского спроса, которые соответственно q 1 =0,3, q 2 =0,2, q 3 =0,4, q 4 =0,1. Необходимо найти стратегию сбыта, максимизирующую средний товарооборот фирмы. При этом использовать критерии Вальда, Гурвица, Сэвиджа, Байеса.
    Решение
  4. Затраты фабрики в течение апреля - мая на единицу продукции составили: платья - 8 денежных единиц, костюмы - 27, а цена реализации равняется соответственно 16 и 48. По данным наблюдений за прошлое время, фабрика может реализовать в течение этих месяцев в условиях теплой погоды 600 костюмов и 1975 платьев, а при прохладной погоде - 625 платьев и 1000 костюмов.

Метод минимального риска используется для определения граничного значения определяющего параметра для принятия решения о состоянии объекта, исходя из условия минимума средних затрат.

Пусть состояние некоторого объекта определяется значением некоторого параметра х. необходимо выбрать такое значение этого параметра х 0 , чтобы:

Исправное состояние характеризуется плотностью распределения параметра х, f (x / D 1) а неисправное – f(x / D 2) (рис 2.8). Кривые f (x / D 1) и f(x / D 2) пересекаются и поэтому невозможно выбрать х 0 так, чтобы правило (2.16) не давало бы ошибочных решений.

Возникающие при принятии решения ошибки подразделяют на ошибки первого и второго рода.

Ошибка первого рода – принятие решения о неисправности (наличии дефекта) объекта, когда в действительности объект находится в исправном состоянии.

Ошибка второго рода – принятие решения об исправном состоянии объекта, когда в действительности объект находится в неисправном состоянии (объект содержит дефект).

Вероятность ошибки первого рода равна произведению вероятности двух событий:

    вероятности того, что объект находится в исправном состоянии;

    вероятности того, что значение определяющего параметра х превысит граничное значение х 0 .

Выражение для определения вероятности ошибки первого рода имеет вид:

где p(D 1 ) – априорная вероятность нахождения объекта в исправном состоянии (считается известной на основании предварительных статистических данных).

Аналогично определяется вероятность ошибки второго рода:

Рис. 2.8. Плотности вероятностей состояний объекта диагностирования

Элементы систем сбора информации: унифицирующие измерительные преобразователи.

Для согласования первичного преобразователя с устройствами системы сбора информации его выходной сигнал должен быть унифицирован, т.е. отвечать некоторым требованиям по уровню, мощности, виду носителя информации и т.д., которые определяются соответствующими ГОСТ.

Для преобразования выходных сигналов первичных преобразователей в унифицированные применяется ряд нормирующих преобразователей. На вход нормирующих преобразователей могут подаваться естественные сигналы первичных преобразователей различных физических величин, а на выходе формируются соответствующие унифицированные сигналы.

Группа средств, обеспечивающих унификацию сигнала между его источником или выходом первичного преобразователя и входом вторичного устройства, относится к классу унифицирующих измерительных преобразователей (УИП).

Различают следующие типы УИП:

    индивидуальные;

    групповые;

    многоканальные.

Индивидуальные УИП (рис. 3.36а)) обслуживают один ПП и включаются между ПП и коммутатором или последующим измерительным преобразователем. Индивидуальные УИП размещаются вместе с ПП непосредственно на объекте исследования.

Они используются для унификации сигналов при сравнительно небольшом количестве измеряемых параметров и при ограниченном времени измерения, не позволяющем использовать групповые УИП.

Индивидуальные УИП позволяют производить:

    преобразование одного унифицированного сигнала в другой;

    гальваническую развязку входных цепей;

    размножение входного сигнала по нескольким выходам.

Однако применение в каждом измерительном комплексе ИИС своего УИП усложняет систему и снижает ее надежность и экономическую эффективность.

Групповые УИП (рис. 3.36б)) являются более эффективными с этой точки зрения они обслуживают определенную группу первичных преобразователей, выходные сигналы которых представляют собой однородные физические величины. Они располагаются в Ииспосле коммутатора и управляются совместно с последним блоком управления.

При построении многоканальных ИИС разнородных физических величин последние группируются по роду физической величины, а каждая группа подключается к соответствующему групповому УИП.

Многоканальные УИП. (рис. 3.36в)) Если измеряемые физические величины в основном разнородные, то в ИИС могут применяться многоканальные УИП, которые представляют собой объединенные в одном корпусе или одной плате несколько индивидуальных УИП. Преобразование информации осуществляется поn входам иn выходам. Основной конструктивной особенностью многоканального УИП является использование общих источника питания и системы контроля для всех индивидуальных УИП.

Рис. 3.36.основные типы унифицирующих

измерительных преобразователей

Основные функции, выполняемые УИП:

    линейные (масштабирование, установление нуля, температурная компенсация);

    нелинейные (лианеризация) преобразования сигналов.

При линейной характеристике первичного преобразователя УИП выполняет линейные операции, которые называются масштабированием . Суть масштабирования заключается в следующем. Пусть входной сигнал изменяется в пределах отy 1 доy 2 , а динамический диапазон выходного сигнала УИП должен лежать в пределах от0 доz . Тогда для совмещения начала динамических диапазонов УИП и первичного преобразователя к сигналу ПП должен быть добавлен сигнал, а затем суммарный сигнал должен быть усилен враз.

Возможен также вариант, при котором выходной сигнал ПП сначала усиливается, а потом совмещаются начала динамических диапазонов.

Первый вариант приведения выходного сигнала к унифицированному виду обычно используется в индивидуальных УИП, а второй в групповых.

Т.к. связь между выходным сигналом yПП и измеряемым параметром чаще всего нелинейная (например, у термопар, платиновых термопреобразователей сопротивления и т.д.) УИП должен выполнять операциюлинеаризации . Линеаризация заключается в спрямлении функции преобразования ПП. В этом случае линеаризующая функция должна иметь вид обратной функции преобразования ПП.

Для линеаризации функции преобразования в УИП используются специальные нелинейные звенья. Они могут включаться до линейного

унифицирующего преобразователя, после него или в цепь обратной связи усилителя, используемого для изменения масштаба измеряемой величины.

U вх

U ОС

U вых

R 1

R 2

R 3

R 4

R 5

D 1

D 2

D 3

Чаще всего линеаризация достигается кусочно–линейной аппроксимацией и выполняется с помощью цепочки последовательно соединенных резисторов, шунтированных стабилитронами или диодами Д 1 Д 3

Рис. 3.37.структурная схема УИП

С ростом напряжения на выходе усилителя увеличивается ток делителя и падение напряжения на каждом из резисторов R 1 R 5 .как только падение напряжения на каком-либо из резисторов достигает напряжения пробоя соответствующего стабилитрона, стабилитрон начинает шунтировать этот резистор. Сопротивления резисторов подбираются таким образом, чтобы получать требуемую зависимость напряжения обратной связиU ОС инвертирующего усилителяУ , снимаемого с резистораR 5 , от выходного напряжения усилителя.

Типовой аналоговый УИП содержит в своем составе:

    выходной усилитель;

    устройство гальванической развязки;

    функциональный преобразователь, линеаризующий сигнал ПП;

    выходной усилитель;

    стабилизированный источник питания.

Некоторые первичные преобразователи в качестве выходного имеют сигнал переменного тока такой сигнал модулируется либо по амплитуде (например, дифференциальные трансформаторные преобразователи), либо по частоте (например, пьезорезонаторы).

В качестве примера рассмотрим структурную схему УИП, предназначенного для преобразования переменного напряжения датчиков давления, перепада давления, расхода, уровня, паросодержания в унифицированный сигнал постоянного тока 0…5 мА (рис. 3.38.).

Рис. 3.38. Структурная схема УИП

Переменное напряжение с дифференциального трансформаторного первичного преобразователя демодулятором преобразуется в пропорциональное напряжение постоянного тока, которое усиливается магнитным МУ и электроннымУ усилителями постоянного тока, охваченными глубокой отрицательной обратной связью через устройство обратной связиОС , позволяющее при необходимости линеаризовать характеристику первичного преобразователя.

Унифицирующие измерительные преобразователи, работающие с частотными ПП, должны выполнять те же функции, что и УИП амплитудных ПП.

Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности. Разъяснить процесс принятия решения в различных ситуациях. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода Рассматриваемые методы относятся к статистическим....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 7

Тема. МЕТОДЫ СТАТИСТИЧЕСКИХ РЕШЕНИЙ

Цель. Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности.

Учебная. Разъяснить процесс принятия решения в различных ситуациях.

Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

Межпредметные связи:

Обеспечивающие: информатика, математика, вычислительная техника и МП , системы программирования.

Обеспечиваемые: Стажерская практика

Методическое обеспечение и оборудование:

Методическая разработка к занятию.

Учебный план.

Учебная программа

Рабочая программа.

Инструктаж по технике безопасности.

Технические средства обучения: персональный компьютер.

Обеспечение рабочих мест:

Рабочие тетради

Ход лекции.

Организационный момент.

Анализ и проверка домашней работы

Ответьте на вопросы:

  1. Что позволяет определить формула Байеса?
  2. В чем состоят основы метода Байеса? Приведите формулу. Дайте определение точного смысла всех входящих в эту формулу величин.
  3. Что означает, что реализация некоторого комплекса признаков K * является детерминирующей?
  4. Объясните принцип формирования диагностической матрицы.
  5. Что означает решающее правило принятия?
  6. Дайте определение методу последовательного анализа.
  7. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода?

План лекции

Рассматриваемые методы относятся к статистическим. В методах статистических решений решающее правило выбирается исходя из некоторых условий оптимальности, например из условия минимума риска. Возникшие в математической статистике как методы проверки статистических гипотез (работы Неймана и Пирсона), рассматриваемые методы нашли широкое применение в радиолокации (обнаружение сигналов на фоне помех), радиотехнике, общей теории связи и других областях. Методы статистических решений успешно используются в задачах технической диагностики.

СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ОДНОГО ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА

Если состояние системы характеризуется одним параметром, то система имеет одномерное пространство признаков. Разделение производится на два класса (дифференциальная диагностика или дихотомия (раздвоенность, последовательное деление на две части, не связанные между собой. ) ).

Рис.1 Статистические распределения плотности вероятности диагностического параметра х для исправного D 1 и дефектного D 2 состояний

Существенно, что области исправного D 1 и дефектного D 2 состояний пересекаются и потому принципиально невозможно выбрать значение х 0 , при котором не было бы ошибочных решений. Задача состоит в том, чтобы выбор х 0 был в некотором смысле оптимальным, например давал наименьшее число ошибочных решений.

Ложная тревога и пропуск цели (дефекта). Эти встречавшиеся ранее термины явно связаны с радиолокационной техникой, но они легко интерпретируются в задачах диагностики.

Ложной тревогой называется случай, когда принимается решение о наличии дефекта, но в действительности система находится в исправном состоянии (вместо D 1 принимается D 2 ).

Пропуск цели (дефекта) — принятие решения об исправном состоянии, тогда как система содержит дефект (вместо D 2 принимается D 1 ).

В теории контроля эти ошибки называются риском поставщика и риском заказчика . Очевидно, что эти двоякого рода ошибки могут иметь различные последствия или различные целы.

Вероятность ложной тревоги равна вероятности произведения двух событий: наличие исправного состояния и значения х > х 0 .

Средний риск. Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта (математическое ожидание) риска.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги.

Метод минимального риска . Вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия т.е. проводится расчет минимального риска происхождения события при налички информации о максимально подобных событиях.

рис. 2. Точки экстремума среднего риска ошибочных решений

Рис. 3. Точки экстремума для двугорбых распределений

Отношение плотностей вероятностей распределения х при двух состояниях называется отношением правдоподобия.

Напомним, что диагноз D 1 соответствует исправному состоянию, D 2 — дефектному состоянию объекта; С 21 — цена ложной тревоги, С 12 — цена пропуска цели (первые индекс — принятое состояние, второй — действительное); С 11 < 0, С 22 < 0 — цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся.

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, так как логарифмическая функция возрастает монотонно вместе со своим аргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Условие минимума риска можно получить из других соображений, которые окажутся важными в дальнейшем.

Метод минимального числа ошибочных решений .

Вероятность ошибочного решения для решающего правила

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.) то применение метода вполне оправдано.

Метод минимакса предназначен для ситуации, когда отсутствуют предварительные статистические сведения о вероятности диагнозов D 1 и D 2 . Рассматривается «наихудший случай», т. е. наименее благоприятные значения Р 1 и Р 2 , приводящие к наибольшему значению (максимуму) риска.

Можно показать для одномодальных распределений, что величина риска становится минимаксной (т. е. минимальной среди максимальных значений, вызванных «неблагоприятной» величиной Pi ). Отметим, что при Р 1 = 0 и Р 1 = 1 риск принятия ошибочного решения отсутствует, так как ситуация не имеет неопределенности. При Р 1 = 0 (все изделия неисправны) вытекает х 0 → -оо и все объекты действительно признаются неисправными; при Р 1 = 1 и Р 2 = 0 х 0 → +оо и в соответствии с имеющейся ситуацией все объекты классифицируются как исправные.

Для промежуточных значений 0 < Pi < 1 риск возрастает и при P 1= P 1* становится максимальным. Рассматриваемым методом выбирают величину х 0 таким образом, чтобы при наименее благоприятных значениях Pi потери, связанные с ошибочными решениями, были бы минимальными.

рис . 4. Определение граничного значения диагностического параметра по методу минимакса

Метод Неймана—Пирсона . Как уже указывалось, оценки стоимости ошибок часто неизвестны и их достоверное определение связано с большими трудностями. Вместе с тем ясно, что во всех с л у чаях желательно при определенном (допустимом) уровне одной из ошибок минимизировать значение другой. Здесь центр проблемы переносится на обоснованный выбор допустимого уровня ошибок с помощью предыдущего опыта или интуитивных соображений.

По методу Неймана—Пирсона минимизируется вероятность пропуска цели при заданном допустимом уровне вероятности ложной тревоги. Таким образом, вероятность ложной тревоги

где А — заданный допустимый уровень вероятности ложной тревоги; Р 1 — вероятность исправного состояния.

Отметим, что обычно это условие относят к условной вероятности ложной тревоги (множитель Р 1 отсутствует). В задачах технической диагностики значения Р 1 и Р 2 в большинстве случаев известны по статистическим данным.

Таблица 1 Пример - Результаты расчета по методам статистических решений

№ п/п

Метод

Граничное значение

Вероятность ложной тревоги

Вероятность пропуска дефекта

Средний риск

Метод минимального риска

7,46

0,0984

0,0065

0,229

Метод минимального числа ошибок

9,79

0,0074

0,0229

0,467

Метод минимакса

Основной вариант

5,71

0,3235

0,0018

0,360

2 вариант

7,80

0,0727

0,0081

0,234

Метод Неймана—Пирсона

7,44

0,1000

0,0064

0,230

Метод наибольшего правдоподобия

8,14

0,0524

0,0098

0,249

Из сопоставления видно, что метод минимального числа ошибок дает неприемлемое решение, так как цены ошибок существенно различны. Граничное значение по этому методу приводит к значительной вероятности пропуска дефекта. Метод минимакса в основном варианте требует очень большого снятия с эксплуатации исследуемых устройств(примерно 32%), так как исходит из наименее благоприятного случая (вероятность неисправного состояния Р 2 = 0,39). Применение метода может быть оправданным, если отсутствуют даже косвенные оценки вероятности неисправного состояния. В рассматриваемом примере удовлетворительные результаты получаются по методу минимального риска.

  1. СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ПРИ НАЛИЧИИ ЗОНЫ НЕОПРЕДЕЛЕННОСТИ И ДРУГИЕ ОБОБЩЕНИЯ

Правило решения при наличии зоны неопределенности.

В некоторых случаях, когда требуется высокая надежность распознавания (большая стоимость ошибок пропуска цели и ложной тревоги), целесообразно ввести зону неопределенности (зону отказа от распознавания). Правило решения будет следующим

при отказ от распознавания.

Разумеется, отказ от распознавания является нежелательным событием. Он свидетельствует, что имеющейся информации недостаточно для принятия решения и нужны дополнительные сведения.

рис. 5. Статистические решения при наличии зоны неопределенности

Определение среднего риска . Величина среднего риска при наличии зоны отказа от распознавания может быть выражена следующим равенством

где C o — цена отказа от распознавания.

Отметим, что С о > 0, иначе задача теряет смысл («вознаграждение» за отказ от распознавания). Точно так же С 11 < 0, С 22 < 0, так как правильные решения не должны «штрафоваться».

Метод минимального риска при наличии зоны неопределенности . Определим границы области принятия решения, исходя из минимума среднего риска.

Если не поощрять правильные решения (С 11 = 0, С 22 = 0) и не платить за отказ от распознавания (С 0 = 0), то область неопределенности будет занимать всю область изменения параметра.

Наличие зоны неопределенности дает возможность обеспечить заданные уровни ошибок за счет отказа от распознавания в «сомнительных» случаях

Статистические решения для нескольких состояний. Выше были рассмотрены случаи, когда статистические решения принимались д ля различения двух состояний (дихотомия). Принципиально такая процедура позволяет провести разделение на n состояний, каждый раз объединяя результаты для состояния D 1 и D 2 . Здесь под D 1 понимаются любые состояния, соответствующие условию «не D 2 ». Однако в некоторых случаях представляет интерес рассмотреть вопрос и в прямой постановке — статистические решения для классификации n состояний.

Выше рассматривались случаи, когда состояние системы (изделия) характеризовалось одним параметром х и соответствующим (одномерным) распределением. Состояние системы характеризуется диагностическими параметрами х 1 х 2 , ..., х n или вектором х:

х= (х 1 х 2 ,...,х n ).

М етод минимального риска.

Наиболее просто обобщаются на многомерные системы методы минимального риска и его частные случаи (метод минимального числа ошибочных решений, метод наибольшего правдоподобия). В случаях, когда в методе статистического решения требуется определение границ области принятия решения, расчетная сторона задачи существенно осложняется (методы Неймана—Пирсона и минимакса).

Домашнее задание: § конспект.

Закрепление материала:

Ответьте на вопросы:

  1. Что называют ложной тревогой?
  2. Что подразумевает пропуск цели (дефекта)?
  3. Дайте объяснение риску поставщика и риску заказчика.
  4. Приведите формулу метода минимального числа ошибочных решений. Дайте определение неосторожного решения.
  5. Для каких случаев предназначен метод минимакса?
  6. Метод Неймана—Пирсона. Объясните его принцип.
  7. Для каких целей применяется зона неопределенности?

Литература:

Амренов С. А. «Методы контроля и диагностики систем и сетей связи» КОНСПЕКТ ЛЕКЦИЙ -: Астана, Казахский государственный агротехнический университет, 2005 г.

И.Г. Бакланов Тестирование и диагностика систем связи. - М.: Эко-Трендз, 2001.

Биргер И. А. Техническая диагностика.— М.: «Машиностроение», 1978.—240,с, ил.

АРИПОВ М.Н, ДЖУРАЕВ Р.Х., ДЖАББАРОВ Ш.Ю. «ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЦИФРОВЫХ СИСТЕМ» -Ташкент, ТЭИС, 2005

Платонов Ю. М., Уткин Ю. Г. Диагностика, ремонт и профилактика персональных компьютеров. -М.: Горячая линия - Телеком, 2003.-312 с: ил.

М.Е.Бушуева, В.В.Беляков Диагностика сложных технических систем Труды 1-го совещания по проекту НАТО SfP-973799 Semiconductors . Нижний Новгород, 2001

Малышенко Ю.В. ТЕХНИЧЕСКАЯ ДИАГНОСТИКА часть I конспект лекций

Платонов Ю. М., Уткин Ю. Г. Диагностика зависания и неисправностей компьютера/Серия «Техномир». Ростов-на-Дону: «Феникс», 2001. — 320 с.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

21092. Экономические методы принятия предпринимательских решений на примере ТОО «Норма- 2005» 127.94 KB
Управленческие решения: сущность требования механизм разработки. Свою управленческую деятельность руководитель реализует через решения. Достижение поставленной цели исследования потребовало решения следующих задач: теоретического обоснования экономических методов принятия решений в системе предпринимательства; структуризации и внутреннего управленческого обследования на основе анализа внешней и внутренней среды исследуемого предприятия; анализа использования информации экономических результатов...
15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
2611. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ 128.56 KB
Например гипотеза простая; а гипотеза: где –сложная гипотеза потому что она состоит из бесконечного множества простых гипотез. Классический метод проверки гипотез В соответствии с поставленной задачей и на основании выборочных данных формулируется выдвигается гипотеза которая называется основной или нулевой. Одновременно с выдвинутой гипотезой рассматривается противоположная ей гипотеза которая называется конкурирующей или альтернативной. Поскольку гипотеза для генеральной совокупности...
7827. Тестирование статистических гипотез 14.29 KB
Для тестирования гипотезы существует два способа сбора данных – наблюдение и эксперимент. Думаю определить какое из данных наблюдений является научным не составит труда. Шаг третий: сохранение результатов Как я уже упоминала в лекции первой один из языков на которых говорит биология – это язык баз данных. Из этого вытекает то какой собственно база данных должна быть и какой задаче она отвечает.
5969. Статистическое исследование и обработка статистических данных 766.04 KB
В курсовой рассматривается следующие темы: статистическое наблюдение, статистическая сводка и группировка, формы выражения статистических показателей, выборочное наблюдение, статистическое изучение взаимосвязи социально-экономических явлений и динамики социально-экономических явлений, экономические индексы.
19036. 2.03 MB
13116. Система сбора и обработки статистических данных «Метеонаблюдения» 2.04 MB
Работы с базами данных и СУБД позволяют значительно качественнее организовать работу сотрудников. Простота в эксплуатации и надежность хранения данных позволяют практически совсем отказаться от ведения бумажного учета. Значительно ускоряется работа с отчетной и статистической информацией калькуляцией данных.
2175. Анализ области решений 317.39 KB
9й вид UML диаграмм диаграммы вариантов использования см. В этом курсе мы не будем разбирать диаграммы UML в деталях а ограничимся обзором их основных элементов необходимым для общего понимания смысла того что изображено на таких диаграммах. Диаграммы UML делятся на две группы статические и динамические диаграммы. Статические диаграммы Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними либо суммарную информацию о сущностях и связях либо сущности и связи существующие в какойто...
1828. Критерий принятия решений 116.95 KB
Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
10569. Классификация управленческих решений 266.22 KB
Классификация управленческих решений. Разработка управленческого решения. Особенности управленческих решений Обыденные и управленческие решения. Обыденные решения это решения принимаемые людьми в повседневной жизни.

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения ci= 1/2minqij + 1/2maxqij. Например, с1=1/2*2+1/2*8=5; аналогично находятся с2=7; с3=6,5; с4= 4,5. Наибольшим является с2=7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i=2 ).

2.3. Анализ связанной группы решений в условиях частичной

неопределенности

Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода . Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения

Математическое ожидание M [Qi ] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :

= M [Qi ] = .

Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:


p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша ).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также : = M = . . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .

Пример 2.7 . Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.

Замечание . Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лаплпаса равновозможности (безразличия) . Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.

Решение. а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход буде равен 26/4.

б) Для каждого варианта решения рассчитаем величины среднего ожидаемого риска на основе матрицы рисков с учетом равновероятности вариантов ситуации: = (3+3+0+8)/4 = 14/4, = 3, = 7/4, = 18/4. Отсюда следует, что наилучшим будет третий вариант, и при этом минимальный средний ожидаемый риск составит 7/4.

2.4. Оптимальность по Парето двухкритериальных финансовых

операций в условиях неопределенности

Из рассмотренного выше следует, что каждое ре­шение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптими­зационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето . Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.

Пусть каждая операция а имеет две числовые характеристики Е(а), r (а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.

Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А - не­которое множество операций, и разные операции обязательно различаются хо­тя бы одной характеристикой. При выборе наилучшей опе­рации желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b , и обозначать а > b, если Е(а) ≥ Е(b ) и r (a ) r(b ) и хотя бы одно из этих неравенств строгое. При этом операция а на­зывается доминирующей , а операция b – доминируемой . Очевидно, что никакая доминируемая операция не может быть признана наилучшей . Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций назы­вается множеством (областью) Парето или множеством оптимально­сти по Парето .

Для множества Парето справедливо утверждение: каждая из характе­ристик Е, r является однозначной функцией другой, т. е. на множестве Парето по од­ной характеристике операции можно однозначно определить другую.

Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка (, ) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.

Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками (, ) взвешивающая формула имеет вид f(i) = 3 - 2 , и наилучшая операция выбирается по максимуму величины f(i) . Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее, чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.

Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т. е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.


Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:

f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;

f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33

Следовательно, лучшей является третья операция, а худшей – четвертая.

Тема 3. Измерители и показатели финансовых рисков

Количественная оценка риска. Риск отдельной операции. Общие измерители риска.

В данной теме рассматриваются критерии и методы принятия решений в тех случаях, когда предполагается, что распределения вероятностей возможных исходов либо известны, либо они могут быть найдены, причем в последнем случае не всегда необходимо за­давать в явном виде плотность распределения.

3.1. Общеметодические подходы к количественной оценке риска

Риск - категория вероятностная, поэтому методы его количественной оцен­ки базируются на ряде важнейших понятий теории вероятностей и математической статистики. Так, главными инструментами статистического метода расчета риска являются:

1) математическое ожидание m, например, такой случайной величины, как результат финансовой операции k : m = Е {k };

2) дисперсия как характеристика степени вариации значений случайной величины k вокруг центра группирования m (напомним, что дисперсия – это математическое ожидание квадрата отклонения случайной величины от своего математического ожидания );

3) стандартное отклонение ;

4) коэффициент вариации , который имеет смысл риска на единицу среднего дохода.

Замечание. Для небольшого набора n значений – малой выборки! – дискретной случайной величины речь, строго говоря, идет лишь об оценках перечисленных измерителей риска .

Так, средним (ожидаемым) значением выборки, или выборочным аналогом математического ожидания , является величина , где р i – вероятность реализации значения случайной величины k . Если все значения равновероятны, то ожидаемое значение случайной выборки вычисляется по формуле .

Аналогично, дисперсия выборки (выборочная дисперсия ) определяется как среднеквадратичное отклонение в выборке: или

. В последнем случае выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии . Поэтому предпочтительнее использовать несмещенную оценку дисперсии , которая задана формулой .

Очевидно, что оценка может быть рассчитана следующим образом или .

Ясно, что оценка коэффициента вариации принимает теперь вид .

В экономических системах в условиях риска принятие решений основывается чаще всего на одном из следующих критериев.

1. Ожидаемого значения (доходности, прибыли или расходов).

2. Выборочной дисперсии или стандартного (среднего квадратического) отклонения .

3. Комбинации ожидаемого значения и дисперсии или среднего квадратического отклонения выборки .

Замечание . Под случайной величиной k в каждой конкретной ситуации понимается соответствующий этой ситуации показатель, который обычно записывается в принятых обозначениях: mp доходность портфеля ценных бумаг , IRR – (Internal Rate of Return) внутренняя (норма) доходности и т. д.

Рассмотрим изложенную идею на конкретных примерах.

3.2. Распределения вероятностей и ожидаемая доходность

Как уже не раз говорилось, риск связан с вероятностью того, что фактическая доходность будет ниже ее ожидаемого значения. Поэтому распределения вероятностей являются основой для измерения риска проводимой операции. Однако, надо помнить, что получаемые при этом оценки носят вероятностный характер.

Пример 1 . Предположим, например, что Вы намерены инвестировать 100000 дол. сроком на один год. Альтернативные варианты инвестиций приведены в табл. 3.1.

Во-первых, это ГКО-ОФЗ со сроком погашения один год и став­кой дохода 8%, которые могут быть приобретены с дисконтом, т. е. по цене ниже номинала, а в момент погашения будет выплачена их номи­нальная стоимость.

Таблица 3.1

Оценка доходности по четырем инвестиционным альтернативам

Состояние

экономики

Вероятность

р i

Доходность инвестиций при данном состоянии экономики, %

корпоративные ценные бумаги

Глубокий спад

Незначительный спад

Стагнация

Незначительный подъем

Сильный подъем

Ожидаемая доходность

Примечание. Доходность, соответствующую различным состояниям экономики, следует рас­сматривать как интервал значений, а отдельные ее значения - как точки внутри этого интервала. Например, 10%-ная доходность облигации корпорации при незначительном спаде представляет со­бой наиболее вероятное значение доходности при данном состоянии экономики, а точечное значение используется для удобства расчетов.

Во-вторых, корпоративные ценные бумаги (голубые фишки), которые продаются по номиналу с купон­ной ставкой 9% (т. е. на 100000 дол. вложенного капитала можно получать 9000 дол. годовых) и сроком погашения 10 лет. Однако Вы собираетесь продать эти ценные бумаги в конце первого года. Следовательно, фактическая до­ходность будет зависеть от уровня процентных ставок на конец года. Этот уровень в свою очередь зависит от состояния экономики на конец года: быстрые темпы экономического развития, вероятно, вызовут повышение процентных ставок, что снизит рыночную стоимость голубых фишек; в случае эко­номического спада возможна противоположная ситуация.

В-третьих, проект капиталовложений 1, чистая стоимость которого составляет 100000 дол. Денежный поток в течение года равен нулю, все выплаты осуще­ствляются в конце года. Сумма этих выплат зависит от состояния экономики.

И, наконец, альтернативный проект капиталовложений 2, совпадающий по всем па­раметрам с проектом 1 и отличающийся от него лишь распределением вероят­ностей ожидаемых в конце года выплат .

Под распределением вероятностей , будем понимать множество вероятностей возможных исходов (в случае непрерывной случайной величины это была бы плотность распределения вероятностей). Именно в этом смысле следует истолковывать представленные в табл. 3.1 четыре распределения вероятностей, соответствующие четырем альтернативным вариантам инвестирования. Доходность по ГКО-ОФЗ точно известна. Она составляет 8% и не зависит от состояния эконо­мики.

Вопрос 1 . Можно ли риск по ГКО-ОФЗ безоговорочно считать равным нулю?

Ответ: а) да; б) думаю, что не все так однозначно, но затрудняюсь дать более полный ответ; в) нет.

Правильный ответ в).

При любом варианте ответа см. справку 1.

Справка 1 . Инвестиции в ГКО-ОФЗ являются безрисковыми только в том смысле, что их номинальная доходность не изменяется в течение данного периода времени. В то же время их реальная доходность содержит определенную долю риска, т. к. она зависит от фактических темпов роста инфляции в течение пери­ода владения данной ценной бумагой. Более того, ГКО могут представлять проблему для инвестора, который обладает портфелем ценных бумаг с целью получения непрерыв­ного дохода: когда истекает срок платежа по ГКО-ОФЗ, необходимо осуще­ствить реинвестирование денежных средств , и если процентные ставки снижаются, до­ход портфеля также уменьшится. Этот вид риска, который носит название риска нормы реинвестирования , не учитывается в нашем примере, так как период, в течение кото­рого инвестор владеет ГКО-ОФЗ, соответствует сроку их погашения. Наконец, отметим, что релевантная доходность любых инвестиций - это доходность после уплаты налогов, поэтому значения доходности, используемые для принятия решения, должны отражать доход за вычетом налогов.

По трем другим вариантам инвестирования реальные, или фактические, значения доходности не будут известны до окончания соответствующих периодов владения активами. Поскольку значения доходности не известны с полной определенно­стью, эти три вида инвестиций являются рисковыми .

Распределения вероятностей бывают дискретными или непрерывными . Дискретное распределение вероятностей имеет конечное число исходов; так, в табл. 3.1 приведены дискретные распределения вероятностей доходностей различных вариантов инвестирования. Доходность ГКО-ОФЗ принимает только одно возможное значение, тогда как каждая из трех оставшихся альтернатив имеет пять возможных исходов. Ка­ждому исходу поставлена в соответствие вероятность его появления. Например, вероятность того, что ГКО-ОФЗ будут иметь доходность 8%, равна 1.00, а вероятность того, что доходность корпоративных ценных бумаг составит 9%, равна 0.50.

Если умножить каждый исход на вероятность его появления, а затем сло­жить полученные результаты, мы получим средневзвешенную исходов. Весами служат соответствующие вероятности, а средневзвешенная представляет собой ожидаемое значение . Так как исходами являются внутренние нормы доходности (Internal Rate of Return, аббревиатура IRR), ожидаемое зна­чение - это ожидаемая норма доходности (Expected Rate of Return, аббревиатура ERR), которую можно представить в следующем виде:

ERR = IRRi, (3.1)

где IRRi, - i-й возможный исход; pi - вероятность появления i-го исхода; п - число возможных исходов.