Роль физики в медицине заключение. Зарождение медицинской физики. Все для людей

СПбГПМА

по истории медицины

История развития медицинской физики

Выполнил: Мызников А.Д.,

студент I курса

Преподаватель: Джарман О.А.

Санкт-Петербург

Введение

Зарождение медицинской физики

2. Средние века и Новое время

2.1 Леонардо да Винчи

2.2 Ятрофизика

3 Создание микроскопа

3. История применения электричества в медицине

3.1 Небольшая предыстория

3.2 Чем мы обязаны Джильберту

3.3 Премия, присужденная Марату

3.4 Спор Гальвани и Вольта

4. Опыты В. В. Петрова. Начало электродинамики

4.1 Применение электричества в медицине и биологии в XIX - XX веках

4.2 История лучевой диагностики и терапии

Краткая история ультразвуковой терапии

Заключение

Список литературы

медицинский физика ультразвуковой лучевой

Введение

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, а вторым - физика. С древних времен связь между медициной и физикой была тесной. Недаром съезды естествоиспытателей и врачей проходили в разных странах совместно вплоть до начала XX в. История развития классической физики показывает, что ее во многом создали врачи, причем многие физические исследования были вызваны вопросами, которые ставила медицина. В свою очередь достижения современной медицины, особенно в области высоких технологий диагностики и лечения, были основаны на результатах различных физических исследований.

Я не случайно выбрал именно эту тему, потому что она для меня, студента специальности "Медицинская биофизика" как ни для кого близка. Я давно хотел узнать, насколько физика помогла развитию медицину.

Цель моей работы заключается в том, чтобы показать, насколько важную роль играла и играет физика в развитии медицины. Невозможно представить современную медицину без физики. Задачи же заключаются в том, чтобы:

Проследить этапы формирования научной базы современной медицинской физики

Показать значение деятельности ученых физиков в развитии медицины

1. Зарождение медицинской физики

Пути развития медицины и физики всегда были тесно переплетены между собой. Уже в глубокой древности медицина, наряду с лекарствами, использовала такие физические факторы, как механические воздействия, тепло, холод, звук, свет. Рассмотрим основные способы использования этих факторов в древней медицине.

Приручив огонь, человек научился (конечно же, не сразу) использовать огонь в лечебных целях. Особенно хорошо это получалось у восточных народов. Еще в древности лечению прижиганием придавали очень большое значение. В древних медицинских книгах говорится о том, что прижигание оказывается действенным даже тогда, когда бессильны иглоукалывания и лекарства. Когда именно возник такой метод лечения точно не установлено. Но известно, что он существовал в Китае с глубокой древности, и применялся еще в каменном веке для лечения людей и животных. Использовали огонь для лечения тибетские монахи. Они делали ожог на санмингах - биологических активных точках, отвечающих за ту или иную часть тела. На поврежденном месте интенсивно шел процесс заживления, и считалось, что с этим заживлением происходило исцеление.

Звук использовался практически всеми древними цивилизациями. Музыка применялась в храмах для лечения нервных расстройств, она находилась в прямой связи с астрономией и математикой у Китайцев. Пифагор утвердил музыку как точную науку. Его последователи использовали её для избавления от ярости и гнева и считали главным средством для воспитания гармоничной личности. Аристотель также утверждал, что музыка способна оказывать влияние на эстетическую сторону души. Царь Давид своей игрой на арфе вылечил от депрессии царя Саула, а также спас его от не чистых духов. Эскулап лечил радикулит громкими звуками трубы. Также известны тибетские монахи (о них шла речь выше) , которые использовали звуки для лечения практически всех болезней человека. Они назывались мантрами - формами энергии в звуке, чистой сущностной энергией самого звука. Мантры подразделялись на различные группы: для лечения лихорадок, кишечных расстройств и т.д. Метод использования мантр применяется тибетскими монахами и по сегодняшний день.

Фототерапия, или терапия светом (photos - "свет"; греч.), существовала всегда. В Древнем Египте, например, был создан специальный храм, посвященный "все исцеляющему лекарю" - свету. А в Древнем Риме дома строились таким образом, чтобы ничто не мешало светолюбивым гражданам ежедневно предаваться "питью солнечных лучей" - так назывался у них обычай принимать солнечные ванны в особых пристройках с плоскими крышами (соляриях). Гиппократ врачевал с помощью солнца болезни кожи, нервной системы, рахит и артрит. Более 2000 лет назад он назвал такое использование солнечного света гелиотерапией.

Также в древности начали развиваться и теоретические разделы медицинской физики. Одним из них является биомеханика. Исследования в области биомеханики имеют столь же древнюю историю, как и исследования по биологии и механике. Исследования, которые по современным понятиям относятся к области биомеханики, были известны еще в древнем Египте. В знаменитом египетском папирусе (The Edwin Smith Surgical Papyrus, 1800 лет до н.э.) описаны различные случаи двигательных повреждений, в том числе паралич вследствие дислокации позвонков, проведена их классификация, даны методы лечения и прогноз.

Сократ, живший ок. 470-399 гг. до н.э., учил, что мы не сможем постигнуть окружающий мир, пока не постигнем нашу собственную природу. Древние греки и римляне многое знали о магистральных кровеносных сосудах и клапанах сердца, умели прослушивать работу сердца (например, греческий врач Аретей во 2-м веке до н.э.) . Герофил из Халцедока (3 в. до н.э.) различал среди сосудов артерии и вены.

Отец современной медицины древнегреческий врач Гиппократ провел реформу античной медицины, отделив ее от методов лечения заклинаниями, молитвами и принесением жертвы богам. В трактатах "Вправление сочленений", "Переломы", "Раны головы" он провел классификацию известных в то время повреждений опорно-двигательной системы и предложил методы их лечения, в частности механические, с помощью тугих повязок, вытяжения, фиксации. По-видимому, уже в то время появились первые усовершенствованные протезы конечностей, которые служили в том числе для выполнения отдельных функций. Во всяком случае, у Плиния Старшего есть упоминание об одном римском командующем, который участвовал во второй Пунической войне (218-210 в.до н.э.). После полученной раны ему была ампутирована правая рука и заменена железной. При этом он мог протезом удерживать щит и участвовал в битвах.

Платон создал учение об идеях - неизменных умопостигаемых прообразах всех вещей. Анализируя форму человеческого тела, он учил, что "боги, подражая очертаниям Вселенной … включили оба божественных круговращения в сферовидное тело … которое мы ныне именуем головой". Устройство опорно-двигательной системы понимается им так: "чтобы голова не катилась по земле, всюду покрытой буграми и ямами … тело стало продолговатым и, по замыслу бога, сделавшего его подвижным, произрастило из себя четыре конечности, которые можно вытягивать и сгибать; цепляясь ими и опираясь на них, оно приобрело способность всюду продвигаться…". Метод рассуждений Платона об устройстве мира и человека построен на логическим исследовании, которое "должно идти таким образом, чтобы добиться наибольшей степени вероятности".

Великий древнегреческий философ Аристотель, сочинения которого охватывают практически все области науки того времени, составил первое подробное описание строения и функций отдельных органов и частей тела животных и заложил основы современной эмбриологии. В возрасте семнадцати лет Аристотель, сын врача из Стагиры, пришел в Афины учиться в Академии Платона (428-348 гг.до н.э.). Пробыв в Академии двадцать лет и став одним из самых близких учеников Платона, Аристотель оставил ее только после смерти учителя. Впоследствии он занялся анатомией и исследованием структуры животных, собирая разнообразные факты и проводя эксперименты и вскрытия. Многие уникальные наблюдения и открытия были им сделаны в этой области. Так, Аристотель впервые установил биение сердца куриного эмбриона на третий день развития, описал жевательный аппарат морских ежей ("Аристотелев фонарь") и многое другое. В поисках движущей силы кровотока, Аристотель предложил механизм движения крови, связанный с ее нагреванием в сердце и охлаждением в легких: "движение сердца похоже на движение жидкости, которую заставляет кипеть теплота". В своих трудах "О частях животных", "О движении животных" ("De Motu Animalium"), "О происхождении животных" Аристотель впервые рассмотрел строение тел более 500 видов живых организмов, организацию работы систем органов, ввел сравнительный метод исследования. При классификации животных он разделил их на две крупные группы - имеющих кровь и бескровных. Это деление сходно с существующим ныне делением на позвоночных и беспозвоночных животных. По способу перемещения Аристотель выделил также группы двуногих, четвероногих, многоногих и безногих животных. Он первый описал ходьбу как процесс, в котором вращательное движение конечностей преобразуется в поступательное движение тела, впервые отметил несимметричный характер движения (опора на левую ногу, перенос тяжестей на левом плече, свойственные правшам). Наблюдая за движениями человека, Аристотель заметил, что отбрасываемая фигурой тень не стене описывает не прямую, а зигзагообразную линию. Им выделены и описаны органы, различные по структуре, но одинаковые по функциям, например, чешуя у рыб, перья у птиц, волосяной покров у животных. Аристотель исследовал условия равновесия тела птиц (двуногая опора). Размышляя о движении животных, он выделил двигательные механизмы: "…движущее при помощи органа есть то, у чего начало совпадает с концом, как в сочленении. Ведь в сочленении имеется выпуклое и полое, одно из них - конец, другое - начало…одно покоится, другое движется … Все движется через толчок или натяжение" . Аристотель первым описал легочную артерию и ввел термин "аорта", отметил корреляции структуры отдельных частей тела, указал на взаимодействие органов в организме, заложил основы учения о биологической целесообразности и сформулирован "принцип экономии": "что природа отнимает в одном месте, то дает в другом". Он впервые описал различия в структуре кровеносной, дыхательной, опорно-двигательной систем разных животных и их жевательного аппарата. В отличие от своего учителя, Аристотель не рассматривал "мир идей" как нечто внешнее по отношению к материальному миру, а ввел "идеи" Платона в качестве составной части природы, ее основного начала, организующего материю. Впоследствии это начало трансформируется в понятия "жизненной энергии", "животных духов".

Великий древнегреческий ученый Архимед заложил основы современной гидростатики своими исследованиями гидростатических принципов, управляющих плавающим телом и исследованиями плавучести тел. Он первым применил математические методы к изучению задач механики, сформулировав и доказав ряд утверждений о равновесии тел и о центре тяжести в виде теорем. Принцип рычага, широко использовавшийся Архимедом для создания строительных конструкций и военных машин, станет одним из первых механических принципов, примененным в биомеханике опорно-двигательной системы. В трудах Архимеда содержатся идеи о сложении движений (прямолинейного и кругового при движении тела по спирали), о непрерывном равномерном приращении скорости при ускорении тела, которые впоследствии Галилей назовет как основу своих фундаментальных трудов по динамике.

В классическом труде "О частях человеческого тела" знаменитый древнеримский врач Гален дал первое в истории медицины целостное описание анатомии и физиологии человека. Эта книга прослужила учебником и настольной книгой по медицине в течение почти полутора тысяч лет. Гален положил начало физиологии, делая первые наблюдения и эксперименты на живых животных и изучая их скелеты. Он ввел в медицину вивисекцию - операции и исследования на живом животном с целью исследования функций организма и разработки методов лечения заболеваний. Он обнаружил, что в живом организме мозг контролирует рече- и звукообразование, что артерии заполнены кровью, а не воздухом и, как мог, исследовал пути перемещения крови в организме, описал структурные различия артерий и вен, обнаружил клапаны сердца. Гален не проводил вскрытий и, возможно, поэтому в его труды попали неверные представления, например, об образовании венозной крови в печени, а артериальной - в левом желудочке сердца. Он не знал также о существовании двух кругов кровообращения и значения предсердий. В своем труде "De motu musculorum" он описал различие между моторными и сенсорными нейронами, мышцами-агонистами и антагонистами, впервые описал тонус мышц. Причиной мышечного сокращения он считал "животные духи", поступающие из мозга в мышцу по нервным волокнам. Исследуя организм, Гален пришел к убеждению, что в природе ничто не излишне и сформулировал философский принцип о том, что, исследуя природу, можно прийти к пониманию замысла бога. В эпоху средневековья, даже при всевластии инквизиции, было сделано очень многое, особенно в анатомии, что впоследствии послужило основой дальнейшего развития биомеханики.

Свое особое место в истории науки занимают результаты исследований, осуществлявшихся в арабском мире и в странах Востока: свидетельством тому служат многие литературные произведения и медицинские трактаты. Арабский врач и философ Ибн Сина (Авиценна) заложил основы рациональной медицины, сформулировал рациональные основания для постановки диагноза на основании обследования пациента (в частности, анализа пульсовых колебаний артерий). Революционность его подхода станет понятной, если вспомнить, что в то время западная медицины, восходившая к Гиппократу и Галену, учитывала влияние звезд и планет на вид и ход течения болезни и выбор терапевтических средств.

Хотелось бы сказать, что в большинстве трудов античных ученых использовался метод определения пульса. Метод диагностики по пульсу возник за много веков до нашей эры. Среди дошедших до нас литературных источников, самыми древними являются труды древнекитайского и тибетского происхождения. К древнекитайским относятся, например, "Бинь-ху Мо-сюэ", "Сян-лэй-ши", "Чжу-бинь-ши", "Нан-цзин", а также разделы в трактатах "Цзя-и-цзин", "Хуан-ди Нэй-цзин Су-вэнь Линь-шу" и др.

История пульсовой диагностики неразрывно связана с именем древнего китайского врачевателя - Бянь Цяо (Цинь Юэ-Жэнь). Начало пути методики пульсовой диагностики, связывают с одной из легенд, согласно которой Бянь Цяо был приглашён на лечение дочери знатного мандарина (чиновника). Ситуация осложнялась тем, что видеть и дотрагиваться до особ знатного сана было строго запрещено даже врачам. Бянь Цяо попросил тонкую бечевку. Затем предложил привязать другой конец шнура на запястье принцессы, находящейся за ширмой, но придворные лекари пренебрежительно отнеслись к приглашенному врачу и решили над ним подшутить, привязав конец шнура не на запястье принцессы, а на лапку собачки, бегавшей рядом. Через несколько секунд, к удивлению присутствующих, Бянь Цяо невозмутимо заявил, что это импульсы не человека, а животного и это животное мается глистами. Искусность врача вызвала восхищение, а шнур с доверием был перенесен на запястье принцессы, после чего было определено заболевание и назначено лечение. В результате принцесса быстро выздоровела, а его методика получила широкую известность.

Хуа То - успешно использовал пульсовую диагностику в хирургической практике, сочетая с клиническим осмотром. В те времена производить операции запрещалось законом, операция производилась в крайнем случае, если уверенности на излечение консервативными методами не было, диагностических лапаротомий хирурги просто не знали. Диагноз ставился при внешнем исследовании. Свое искусство владения пульсовым диагнозом Хуа То передавал старательным ученикам. Существовало правило о том, что совершенному владению пульсовой диагностикой может научиться только мужчина, учась только у мужчины в течение тридцати лет. Хуа То был первым, кто применил особый прием для экзаменации учеников по умению использовать пульсы для диагноза: пациента усаживали за ширмой, а в разрезы в ней просовывали его руки так, что ученик мог видеть и изучать только кисти. Ежедневная, настойчивая практика быстро давала успешные результаты.

2. Средние века и Новое время

1 Леонардо да Винчи

В Средние века и в эпоху Возрождения развитие основных разделов физики происходило в Европе. Известным физиком того времени, но не только физиком, был Леонардо да Винчи. Леонардо исследовал движения человека, полет птиц, работу сердечных клапанов, движение растительного сока. Он описал механику тела при положении стоя и подъеме из положения сидя, ходьбе в гору и под гору, технику прыжка, впервые описал разнообразие походок людей с разным телосложением, выполнил сравнительный анализ походки человека, обезьяны и ряда животных, способных к двуногой ходьбе (медведя). Во всех случаях особое внимание уделялось положению центров тяжести и сопротивления. В механике Леонардо да Винчи впервые ввел понятие сопротивления, которое оказывают жидкости и газы движущимся в них телам и первый понял важность нового понятия - момента силы относительно точки - для анализа движения тел. Анализируя силы, развиваемые мышцами и имея превосходные познания в анатомии, Леонардо вводил линии действия сил вдоль направления соответствующей мышцы и тем самым предвосхитил представление о векторном характере сил. При описании действия мышц и взаимодействия систем мышц при выполнении движения Леонардо рассматривал шнуры, натянутые между точками крепления мышц. Для обозначения отдельных мышц и нервов он использовал буквенные обозначения. В его работах можно найти основы будущего учения о рефлексах. Наблюдая сокращения мышц, он отметил, что сокращения могут происходить непроизвольно, автоматически, без сознательного контроля. Все наблюдения и идея Леонардо старался воплотить в технических приложениях, оставил многочисленные чертежи устройств, предназначенных для разного рода перемещений, от водных лыж и планеров до протезов и прообразов современных колясок для инвалидов (всего более 7 тысяч листов рукописей). Леонардо да Винчи проводил исследования звука, генерируемого при движении крыльев насекомых, описал возможность изменения высоты звука при надрезании крыла или смазывании его медом. Проводя анатомические исследования, он обратил внимание на особенности ветвления трахеи, артерий и вен в легких, а также указал, что эрекция является следствием притока крови к половым органам. Он выполнил пионерские исследования филлотаксиса, описав закономерности листорасположения ряда растений, изготовлял отпечатки сосудисто-волокнистых пучков листьев и исследовал особенности их строения.

2 Ятрофизика

В медицине XVI-XVIII веков существовало особое направление, называвшееся ятромеханикой или ятрофизикой (от греческого iatros - врач). В трудах известного швейцарского врача и химика Теофраста Парацельса и голландского натуралиста Яна Ван-Гельмонта, известного своими опытами по самозарождению мышей из пшеничной муки, пыли и грязных рубашек, содержалось утверждение о целостности организма, описанное в форме мистического начала. Представители рационального мировоззрения не могли принять этого и в поисках рациональных оснований биологических процессов положили в основу их изучения механику - наиболее развитую в то время область знания. Ятромеханика претендовала на объяснение всех физиологических и патологических явлений исходя из законов механики и физики. Известный немецкий врач, физиологи и химик Фридрих Гофман сформулировал своеобразное кредо ятрофизики, по которому жизнь - это движение, а механика - это причина и закон всех явлений. Гофман рассматривал жизнь как механический процесс, в ходе которого движения нервов, по которым перемещается находящийся в мозге "животный дух" (spiritum animalium) , управляют сокращениями мышц, циркуляцией крови и работой сердца. В результате этого организм - своеобразная машина - приводится в движение. Механика при этом рассматривалась как основа жизнедеятельности организмов.

Подобные претензии, как теперь понятно, были во многом несостоятельны, но ятромеханика противостояла схоластическим и мистическим представлениям, ввела в обиход многие важные доселе неизвестные фактические сведения и новые приборы для физиологических измерений. Например, согласно воззрениям одного из представителей ятромеханики Джорджио Бальиви рука уподоблялась рычагу, грудная клетка - кузнечным мехам, железы - ситам, а сердце - гидравлическому насосу. Эти аналогии вполне разумны и сегодня. В XVI веке в работах французского армейского врача А.Паре (Ambroise Pare) были заложены основы современной хирургии и предложены искусственные ортопедические приспособления - протезы ноги, руки, кисти, разработка которых основывалась скорее на научном фундаменте, чем на простой имитации утраченной формы. В 1555 г. в работах французского натуралиста Пьера Белона был описан гидравлический механизм движения актиний. Один из основателей ятрохимии Ван-Гельмонт, изучая процессы брожения пищи в организмах животных, заинтересовался газообразными продуктами и ввел в науку термин "газ" (от голландского gisten - бродить). К развитию идей ятромеханики были причастны А.Везалий, У.Гарвей, Дж.А.Борелли, Р.Декарт. Ятромеханика, сводящая все процессы в живых системах к механическим, равно как и восходящая к Парацельсу ятрохимия, представители которой полагали, что жизнь сводится к химическим превращениям химических веществ, составляющих тело, приводили к одностороннему и зачастую неверному представлению о процессах жизнедеятельности и способах лечения заболеваний. Тем не менее, эти подходы, в особенности их синтез, позволили сформулировать рациональный подход в медицине XVI-XVII веков. Даже учение о возможности самозарождения жизни сыграло свою позитивную роль, ставя под сомнение религиозные гипотезы о сотворении жизни. Парацельс создал "анатомию сущности человека", которой пытался показать, что в „теле человека соединились мистическим образом три вездесущих ингредиента: соли, сера и ртуть" .

В рамках философских концепций того времени формировалось новое ятромеханическое представление о сути патологических процессов. Так, немецкий врач Г.Шатль создал учение об анимизме (от лат.anima - душа), в соответствии с которым болезнь рассматривалась как движения, совершаемые душой для вывода из тела чужеродных вредных веществ. Представитель ятрофизики итальянский врач Санторио (1561-1636), профессор медицины в Падуе считал, что любая болезнь - это следствие нарушения закономерностей движения отдельных мельчайших частиц организма. Санторио одним из первых применил экспериментальный метод исследования и математическую обработку данных, создал ряд интересных приборов. В сконструированной им специальной камере Санторио изучал обмен веществ и впервые установил связанное с жизненными процессами непостоянство веса тела. Совместно с Галилеем он изобрел ртутный термометр для измерения температуры тел (1626 г.). В его труде "Статическая медицина" (1614) одновременно представлены положения ятрофизики и ятрохимии. Дальнейшие исследования привели к революционным изменениями в представлениях о строении и работе сердечно-сосудистой системы. Итальянский анатом Фабрицио д"Аквапенденте обнаружил венозные клапаны. Итальянский исследователь П.Азелли и датский анатом Т.Бартолин обнаружили лимфатические сосуды.

Английскому врачу Уильяму Гарвею принадлежит открытие замкнутости системы кровообращения. Обучаясь в Падуе (в 1598-1601), Гарвей слушал лекции Фабрицио д"Аквапенденте и, по-видимому посещал лекции Галилея. Во всяком случае, Гарвей находился в Падуе, в то время как там гремела слава о блестящих лекциях Галилея, которые посещались многими исследователями, приезжавшие специально издалека. Открытие Гарвеем замкнутости кровообращения явилось результатом систематического применения разработанного ранее Галилеем количественного метода измерений, а не простым наблюдением или догадкой. Гарвей выступил с демонстрацией, в ходе которой он показал, что кровь движется из левого желудочка сердца только в одном направлении. Измерив объем крови, выбрасываемой сердцем за одно сокращение (ударный объем), он умножил получившееся число на частоту сокращений сердца и показал, что за час оно прокачивает объем крови, намного превышающий объем тела. Таким образом был сделан вывод, что значительно меньший объем крови должен непрерывно циркулировать по замкнутому кругу, поступая в сердце и прокачиваясь им по системе сосудов. Результаты работы были опубликованы в труде "Анатомическое исследование о движении сердца и крови у животных" (1628 г.). Результаты работы были более чем революционными. Дело в том, что со времен Галена считалось, что кровь производится в кишечнике, откуда поступает в печень, затем в сердце, откуда распределяется по системе артерий и вен к остальным органам. Гарвей описал сердце разделенный на отдельные камеры как мышечный мешок, выполняющий роль насоса, нагнетающего кровь в сосуды. Кровь движется по кругу в одном направлении и попадает снова в сердце. Обратному же току крови в венах препятствуют венозные клапаны, обнаруженные Фабрицио д"Аквапенденте. Революционное учение Гарвея о кровообращении противоречило утверждениям Галена, в связи с чем его книги подвергались резкой критике и даже пациенты зачастую отказывались от его врачебных услуг. С 1623 г. Гарвей служил в качестве придворного врача Карла I и высочайшее покровительство спасало его от нападок противников и обеспечивало возможность дальнейшей научной работы. Гарвей выполнил обширные исследования по эмбриологии, описал отдельные стадии развития зародыша ("Исследования о рождении животных", 1651). XVII век можно назвать эпохой гидравлики и гидравлического мышления. Успехи техники способствовали появлению новых аналогий и лучшему пониманию процессов, происходящих в живых организмах. Вероятно, именно поэтому Гарвей описал сердце как гидравлический насос, прокачивающий кров по „трубопроводу" сосудистой системы. Для полного признания результатов работы Гарвея требовалось только найти недостающее связующее звено, замыкающее круг между артериями и венами, что будет сделано вскоре в работах Мальпиги. Механизм работы легких и причины прокачивания воздуха по ним остались для Гарвея непонятыми - небывалые успехи химии и открытие состава воздух были еще впереди. XVII век является важной вехой в истории биомеханики, поскольку он был ознаменован не только появлением первых печатных трудов по биомеханике, но и становлением нового взгляда на жизнь и природу биологической подвижности.

Французский математик, физик, философ и физиолог Рене Декарт был первым, кто попытался построить механическую модель живого организма с учетом управления посредством нервной системы. Его трактовка физиологической теории на основе законов механики содержалась в опубликованном посмертно труде (1662-1664). В этой формулировке впервые была высказана кардинальная для наук о живом идея регуляции посредством обратной связи. Декарт рассматривал человека как телесный механизм, приводимый в движение "живыми духами", которые "постоянно восходят в большом количестве от сердца к мозгу, а оттуда - через нервы к мышцам и приводят все члены в движение". Не преувеличивая роль "духов", в трактате "Описание человеческого тела. Об образовании животного" (1648 г.) он пишет, что знание механики и анатомии позволяет увидеть в теле "значительное количество органов, или пружин" для организации передвижения организма. Работу организма Декарт уподобляет механизму часов, с отдельными пружинами, винтиками, шестеренками. Кроме этого, Декарт занимался исследованием координации движений различных частей тела. Проводя обширные эксперименты по исследованию работы сердца и движению крови в полостях сердца и крупных сосудах, Декарт не соглашается с концепцией Гарвея о сокращениях сердца как движущей силе кровообращения. Он отстаивает восходящую в Аристотелю гипотезу о нагревании и разжижении крови в сердце под действием присущей сердцу теплоте, продвижении расширяющейся крови в крупные сосуды, где она охлаждается, а "сердце и артерии немедленно опадают и сжимаются". Роль дыхательной системы Декарт видит в том, что дыхание "приносит в легкие достаточно свежего воздуха для того, чтобы кровь, поступающая туда из правой части сердца, где она разжижалась и как бы превращалась в пар, снова обратилась из пара в кровь". Он исследовал также движения глаз, использовал деление биологических тканей по механическим свойствам на жидкие и твердые. В области механики Декарт сформулировал закон сохранения количества движения и ввел понятие импульса силы.

3 Создание микроскопа

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп". Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).

"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

3. История использования электричества в медицине

3.1 Небольшая предыстория

С давних времен человек пытался понять явления в природе. Много гениальных гипотез, объясняющих происходящее вокруг человека, появилось в разное время и в разных странах. Мысли греческих и римских ученых и философов, живших еще до нашей эры: Архимеда, Евклида, Лукреция, Аристотеля, Демокрита и других - и сейчас помогают развитию научных исследований.

После первых наблюдений электрических и магнитных явлений Фалесом Милетским периодически возникал интерес к ним, определяемый задачами врачевания.

Рис. 1. Опыт с электрическим скатом

Следует отметить, что электрические свойства некоторых рыб, известные еще в далекие времена, до сих пор являются нераскрытой тайной природы. Так, например, в 1960 г. на выставке, организованной английским Научным королевским обществом в честь 300-летия со дня его основания, среди загадок природы, которые человеку предстоит раскрыть, демонстрировался обычный стеклянный аквариум с находящейся в нем рыбой -электрическим скатом (рис.1). К аквариуму через металлические электроды был подключен вольтметр. Когда рыба была в покое, стрелка вольтметра стояла на нуле. При движении рыбы вольтметр показывал напряжение, достигавшее при активных движениях 400 В. Надпись гласила: "Природу этого электрического явления, наблюдавшегося задолго до организации английского королевского общества, человек разгадать до сих пор не может".

2 Чем мы обязаны Джильберту?

Лечебное действие электрических явлений на человека по существовавшим в далекие времена наблюдениям можно рассматривать как своеобразное стимулирующее и психогенное средство. Этим средством или пользовались, или о нем забывали. Долгое время серьезных исследований самих электрических и магнитных явлений, и особенно их действия в качестве лечебного средства, не проводилось.

Первое обстоятельное экспериментальное исследование электрических и магнитных явлений принадлежит английскому врачу-физику, впоследствии придворному лейб-медику Вильяму Джильберту (Гильберту) (1544-1603 тт.). Джильберта заслуженно считали врачом-новатором. Успех его в значительной степени определялся добросовестным изучением, а затем и применением древних медицинских средств, в том числе электричества и магнетизма. Джильберт понимал, что без обстоятельного изучения электрического и магнитного излучения трудно использовать "флюиды" при лечении.

Пренебрегая фантастическими, непроверенными домыслами и бездоказательными утверждениями, Джильберт провел разносторонние экспериментальные исследования электрических и магнитных явлений. Результаты этого первого в истории изучения электричества и магнетизма грандиозны.

Прежде всего Джильберт высказал впервые мысль, что магнитная стрелка компаса перемещается под влиянием магнетизма Земли, а не под действием одной из звезд, как полагали до него. Он впервые осуществил искусственное намагничивание, установил факт неотделимости магнитных полюсов. Изучая одновременно с магнитными явлениями и электрические, Джильберт на основе многочисленных наблюдений показал, что электроизлучение возникает не только при трении янтаря, но и при трении иных материалов. Отдавая должное янтарю - первому материалу, на котором наблюдалась электризация, он называет их электрическими, положив в основу греческое название янтаря - электрон. Следовательно, слово "электричество" введено в жизнь по предложению врача на основе ставшего историческим его исследования, которое положило начало развитию и электротехники и электротерапии. В то же время Джильберт удачно сформулировал принципиальное различие электрических и магнитных явлений: "Магнетизм, так же как и тяжесть, есть некоторая изначальная сила, исходящая из тел, в то время как электризация обусловлена выжиманием из пор тела особых истечений в результате трения".

По существу, до работ Ампера и Фарадея, т. е. на протяжении двухсот с лишним лет после смерти Джильберта (результаты его исследований были опубликованы в книге "О магните, магнитных телах и о большом магните - Земле", 1600 г.), электризация и магнетизм рассматривались изолированно.

П. С. Кудрявцев в "Истории физики" приводит слова великого представителя эпохи Возрождения Галилея: "Воздаю хвалу, дивлюсь, завидуя Гильберту (Джильберту). Он развил достойные удивления идеи о предмете, о котором трактовало столько гениальных людей, но который ни одним из них не был изучен внимательно... Я не сомневаюсь, что со временем эта отрасль науки (речь идет об электричестве и магнетизме - В. М.) сделает успехи как вследствие новых наблюдений, так, особенно, вследствие строгой меры доказательств".

Джильберт умер 30 ноября 1603 г., завещав все созданные им приборы и труды Лондонскому обществу медиков, активным председателем которого он был до самой смерти.

3 Премия, присужденная Марату

Канун французской буржуазной революции. Подытожим исследования в области электротехники этого периода. Установлено наличие положительного и отрицательного электричества, построены и усовершенствованы первые электростатические машины, созданы лейденские банки (своеобразные накопители зарядов - конденсаторы), электроскопы, сформулированы качественные гипотезы электрических явлений, проведены смелые попытки исследовать электрическую природу молнии.

Электрическая природа молнии и действие ее на человека еще больше укрепляли мнение, что электричество может не только поражать, но и лечить людей. Приведем некоторые примеры. 8 апреля 1730 г. англичане Грей и Уилер провели ставший ныне классическим опыт с электризацией человека.

Во дворе дома, где жил Грей, были врыты в землю два сухих деревянных столба, на которых была укреплена деревянная балка- Через деревянную балку были перекинуты два волосяных каната. Нижние концы их были связаны. Канаты легко выдерживали вес мальчика, согласившегося принять участие в опыте. Расположившись, как на качелях, мальчик одной рукой держал наэлектризованный трением стержень или металлический прут, на который передавался электрический заряд от наэлектризованного тела. Другой рукой мальчик бросал одну за другой монеты в металлическую тарелку, находившуюся на сухой деревянной доске под ним (рис. 2). Монеты приобретали заряд через тело мальчика; падая, они заряжали металлическую тарелку, которая начинала притягивать кусочки сухой соломы, расположенные вблизи. Опыты проводились многократно и вызвали значительный интерес не только у ученых. Английский поэт Георг Бозе писал:

Безумный Грей, что знал ты в самом деле О свойствах силы той, неведомой доселе? Разрешено ль тебе, безумец, рисковать И человека с электричеством связать?

Рис. 2. Опыт с электризацией человека

Французы Дюфе, Нолле и наш соотечественник Георг Рихман почти одновременно, независимо друг от друга сконструировали прибор для измерения степени электризации, что значительно расширило применение электрического разряда для лечения, появилась возможность его дозировки. Парижская академия наук посвятила несколько заседаний обсуждению действия разряда лейденских банок на человека. Заинтересовался этим и Людовик XV. По просьбе короля физик Нолле совместно с врачом Луи Лемонье провел в одной из больших зал Версальского дворца опыт, демонстрирующий укалывающее действие статического электричества. Польза от "придворных забав" была: многих они заинтересовали, многие начали заниматься изучением явлений электризации.

В 1787 г. английский врач и физик Адаме впервые создал специальную электростатическую машину для лечебных целей. Ею он широко пользовался в своей медицинской практике (рис. 3) и получал положительные результаты, которые можно объяснить и стимулирующим действием тока, и психотерапевтическим эффектом, и специфическим действием разряда на человека.

Эпоха электростатики и магнитостатики, к которой относится все, о чем говорилось выше, завершается разработкой математических основ этих наук, выполненной Пуассоном, Остроградским, Гауссом.

Рис. 3. Сеанс электролечения (со старинной гравюры)

Использование электрических разрядов в медицине и биологии получило полное признание. Сокращение мышц, вызванное касанием электрических скатов, угрей, сомов, свидетельствовало о действии электрического удара. Опыты англичанина Джона Уорлиша доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этой рыбы.

В 1752 г. немецкий врач Зульцер опубликовал сообщение о новом, обнаруженном им явлении. Касание языком одновременно двух разнородных металлов вызывает своеобразное кислое вкусовое ощущение. Зульцер не предполагал, что это наблюдение представляет собой начало важнейших научных направлений - электрохимии и электрофизиологии.

Интерес к использованию электричества в медицине возрастал. Руанская академия объявила конкурс на лучшую работу по теме: "Определить степень и условия, при которых можно рассчитывать на электричество в лечении болезней". Первая премия была присуждена Марату - врачу по профессии, чье имя вошло в историю французской революции. Появление работы Марата было своевременным, так как применение электричества для лечения не обошлось без мистики и шарлатанства. Некий Месмер, используя модные научные теории об искрящих электрических машинах, начал утверждать, что им в 1771 г. найдено универсальное медицинское средство - "животный" магнетизм, действующий на больного на расстоянии. Им были открыты специальные врачебные кабинеты, где находились электростатические машины достаточно высокого напряжения. Больной должен был касаться токоведущих частей машины, при этом он ощущал удар электрического тока. По-видимому, случаи положительного эффекта пребывания во "врачебных" кабинетах Месмера можно объяснить не только раздражающим действием электрического удара, но и действием озона, появляющегося в помещениях, где работали электростатические машины, и явлениями, о которых упоминалось ранее. Могло положительно влиять на некоторых больных и изменение содержания бактерий в воздухе под действием ионизации воздуха. Но об этом Месмер и не подозревал. После сопровождавшихся тяжелым исходом неудач, о которых своевременно предупреждал в своей работе Марат, Месмер исчез из Франции. Созданная с участием крупнейшего французского физика Лавуазье правительственная комиссия для расследования "врачебной" деятельности Месмера не сумела объяснить положительного действия электричества на человека. Лечение электричеством во Франции временно прекратилось.

4 Спор Гальвани и Вольта

А теперь речь пойдет об исследованиях, проведенных почти через двести лет после публикации работы Джильберта. Они связаны с именами итальянского профессора анатомии и медицины Луиджи Гальвани и итальянского профессора физики Алессандро Вольта.

В лаборатории анатомии Булонского университета Луиджи Гальвани провел опыт, описание которого потрясло ученых всего мира. На лабораторном столе препарировались лягушки. Задача опыта заключалась в демонстрации и наблюдении обнаженных, нервов их конечностей. На этом столе находилась электростатическая машина, с помощью которой создавалась и изучалась искра. Приведем высказывания самого Луиджи Гальвани из его работы "О силах электрических при мышечных движениях": "... Один из моих помощников острием случайно очень легко коснулся внутренних бедренных нервов лягушки. Лапка лягушки резко дернулась". И далее: ". .. Это удается тогда, когда из конденсатора машины извлекается искра".

Это явление можно объяснить следующим образом. На атомы и молекулы воздуха в зоне возникновения искры действует меняющееся электрическое поле, в результате они приобретают электрический заряд, переставая быть нейтральными. Возникшие ионы и электрически заряженные молекулы распространяются на некоторое, относительно небольшое расстояние от электростатической машины, так как при движении, сталкиваясь с молекулами воздуха, теряют свой заряд. В то же время они могут накапливаться на металлических предметах, хорошо изолированных от поверхности земли, и разряжаются в случае, если возникнет проводящая электрическая цепь на землю. Пол в лаборатории был сухой, деревянный. Он хорошо изолировал помещение, где работал Гальвани, от земли. Предметом, на котором накапливались заряды, был металлический скальпель. Даже легкое касание скальпелем нерва лягушки приводило к "разряду" накопившегося на скальпеле статического электричества, вызывая отдергивание лапки без какого-либо механического разрушения. Само по себе явление вторичного разряда, вызванное электростатической индукцией, уже в то время было известно.

Блестящий талант экспериментатора и проведение большого числа разносторонних исследований позволили Гальвани обнаружить другое важное для дальнейшего развития электротехники явление. Идет опыт по изучению атмосферного электричества. Процитируем самого Гальвани: ". ...Утомленный... тщетным ожиданием.. . начал. .. прижимать медные крючки, воткнутые в спинной мозг, к железной решетке - лапки лягушки сократились". Результаты эксперимента, проведенного уже не на открытом воздухе, а в помещении при отсутствии каких-либо работающих электростатических машин, подтвердили, что сокращение мышцы лягушки, подобное сокращению, вызванному искрой электростатической машины, возникает при касании тела лягушки одновременно двумя различными металлическими предметами - проволокой и пластиной из меди, серебра или железа. Такого явления никто до Гальвани не наблюдал. На основе результатов наблюдений он делает смелый однозначный вывод. Существует иной источник электричества, им является "животное" электричество (термин равнозначен термину "электрическая активность живой ткани"). Живая мышца, утверждал Гальвани, представляет собой конденсатор вроде лейденской банки, внутри нее накапливается положительное электричество. Нерв лягушки служит внутренним "проводником". Присоединение к мышце двух металлических проводников вызывает появление электрического тока, что приводит, подобно искре от электростатической машины, к сокращению мышцы.

Гальвани экспериментировал в целях получения однозначного результата только на мышцах лягушки. Возможно именно это позволило ему предложить использовать "физиологический препарат" лапки лягушки в качестве измерителя количества электричества. Мерой количества электричества, для оценки которого служил подобный физиологический индикатор, являлись активность подъема и падения лапки при соприкосновении ее с металлической пластинкой, которой одновременно касается крючок, проходящий через спинной мозг лягушки, и частота подъемов лапки в единицу времени. Некоторое время подобный физиологический индикатор использовался даже крупными физиками, и в частности Георгом Омом.

Электрофизиологический эксперимент Гальвани позволил Алессандро Вольта создать первый электрохимический источник электрической энергии, что, в свою очередь, открыло новую эпоху в развитии электротехники.

Алессандро Вольта одним из первых по достоинству оценил открытие Гальвани. Он повторяет с большой тщательностью опыты Гальвани, получает много данных, подтверждающих его результаты. Но уже в первых своих статьях "О животном электричестве" и в письме к доктору Боронио от 3 апреля 1792 г. Вольта в отличие от Гальвани, трактующего наблюдаемые явления с позиций "животного" электричества, выдвигает на первый план химико-физические явления. Вольта устанавливает важность использования для этих опытов разнородных металлов (цинк, медь, свинец, серебро, железо), между которыми проложена смоченная кислотой ткань.

Вот что пишет Вольта: "В.опытах Гальвани источником электричества является лягушка. Однако, что собой представляет лягушка или вообще любое животное? Прежде всего, это нервы и мышцы, а в них различные химические соединения. Если нервы и мышцы препарированной лягушки соединить с двумя разнородными металлами, то при замыкании такой цепи проявляется электрическое действие. В моем последнем опыте тоже участвовали два разнородных металла - это станиоль (свинец) и серебро, а роль жидкости играла слюна языка. Замыкая цепь соединительной пластинкой, я создавал условия для непрерывного передвижения электрической жидкости с одного места на другое. Но я ведь мог опустить эти же металлические предметы просто в воду или в жидкость, подобную слюне? Причем здесь "животное" электричество?"

Опыты, проведенные Вольта, позволяют сформулировать вывод о том, что источником электрического действия является цепь из разнородных металлов при их соприкосновении с влажной или смоченной в растворе кислоты тканью.

В одном из писем своему другу врачу Вазаги (опять пример проявления интереса врача к электричеству) Вольта писал: "Я уже давно убедился, что все действие исходит от металлов, от соприкосновения которых электрическая жидкость входит во влажное или водянистое тело. На этом основании я считаю себя вправе приписать все новые электрические явления металлам и заменить название "животное электричество" выражением "металлическое электричество".

По мнению Вольта, лапки лягушки - чувствительный электроскоп. Возник исторический спор между Гальвани и Вольта, а также между их последователями - спор о "животном" или ""металлическом" электричестве.

Гальвани не сдавался. Он полностью исключил из эксперимента металл и даже лягушек препарировал стеклянными ножами. Оказалось, что и при таком опыте соприкосновение бедренного нерва лягушки с ее мышцей приводило к хорошо заметному, хотя и значительно меньшему, чем при участии металлов, сокращению. Это была первая фиксация биоэлектрических явлений, на которых построена современная электродиагностика сердечно-сосудистой и ряда других систем человека.

Вольта пытается разгадать природу обнаруженных необычных явлений. Перед собой он четко формулирует следующую задачу: "Что же является причиной возникновения электричества? - спросил я себя так же, как и каждый из вас сделал бы это. Размышления привели меня к одному решению: от соприкосновения двух разнородных металлов, например серебра и цинка, нарушается равновесие электричества, находящегося в обоих металлах. В точке соприкосновения металлов положительное электричество направляется от серебра к цинку и накапливается на последнем, в то самое время как отрицательное электричество сгущается на серебре. Это значит, что электрическая материя перемещается в определенном направлении. Когда я накладывал друг на друга пластинки из серебра и цинка без промежуточных прокладок, то есть цинковые пластинки находились в соприкосновении с серебряными, то общее их действие сводилось к нулю. Чтобы усилить электрическое действие или суммировать его, следует каждую цинковую пластинку привести в соприкосновение только с одной серебряной и последовательно сложить наибольшее число пар. Это и достигается как раз тем, что на каждую цинковую пластинку я кладу мокрый кусок ткани, отделяя ее тем самым от серебряной пластинки следующей пары". Многое из сказанного Вольта не теряет значения и сейчас, в свете современных научных представлений.

К сожалению, этот спор был трагически прерван. Армия Наполеона оккупировала Италию. За отказ присягнуть новому правительству Гальвани потерял кафедру, был уволен и вскоре скончался. Второй участник спора Вольта дожил до дня полного признания открытий обоих ученых. В историческом споре оба оказались правы. Биолог Гальвани вошел в историю науки как основоположник биоэлектричества, физик Вольта - как основоположник электрохимических источников тока.

4. Опыты В. В. Петрова. Начало электродинамики

Работами профессора физики Медико-хирургической академии (ныне Военно-медицинская академия имени С. М. Кирова в Ленинграде), академика В. В. Петрова заканчивается первый этап науки о "животном" и "металлическом" электричестве.

Деятельность В.В.Петрова оказала огромное влияние на развитие науки по использованию электричества в медицине и биологии в нашей стране. В Медико-хирургической академии им был создан физический кабинет, оснащенный великолепным оборудованием. Работая в нем, Петров построил впервые в мире электрохимический источник электрической энергии высокого напряжения. Оценивая напряжение этого источника по числу входящих в него элементов, можно полагать, что напряжение достигало 1800-2000 В при мощности около 27-30 Вт. Этот универсальный источник позволил В. В. Петрову в течение короткого срока провести десятки исследований, открывших разнообразные пути применения электричества в различных областях. Имя В. В. Петрова обычно связывают с появлением нового источника освещения, а именно электрического, на базе использования обнаруженной им эффективно действующей электрической дуги. В 1803 г. в книге "Известие о гальвани-вольтовских опытах" В. В. Петров изложил результаты своих исследований. Это - первая книга об электричестве, вышедшая в нашей стране. Она была переиздана у нас в 1936 г.

В этой книге важны не только электротехнические исследования, но и результаты изучения взаимосвязи и взаимодействия электрического тока с живым организмом. Петров показал, что тело человека способно к электризации и что гальвани-вольтовская батарея, состоящая из большого числа элементов, опасна для человека; по существу, он предсказал возможность применения электричества для физиотерапевтического лечения.

Влияние исследований В. В. Петрова на развитие электротехники и медицины велико. Его работа "Известие о гальвани-вольтовских опытах", переведенная на латинский язык, украшает наряду с русским изданием национальные библиотеки многих европейских стран. Созданная В.В.Петровым электрофизическая лаборатория, позволила ученым академии в середине XIX века широко развернуть исследования в области использования электричества для лечения. Военно-медицинская академия в этом направлении заняла ведущее положение не только среди институтов нашей страны, но и европейских институтов. Достаточно назвать имена профессоров В. П. Егорова, В, В. Лебединского, А. В. Лебединского, Н. П. Хлопина, С. А. Лебедева.

Что принес XIX век в изучении электричества? Прежде всего, окончилась монополия медицины и биологии на электричество. Начало этому положили Гальвани, Вольта, Петров. Первая половина и середина XIX века отмечены крупными открытиями в электротехнике. Эти открытия связаны с именами датчанина Ганса Эрстеда, французов Доминика Араго и Андре Ампера, немца Георга Ома, англичанина Майкла Фарадея, наших соотечественников Бориса Якоби, Эмиля Ленца и Павла Шиллинга и многих других ученых.

Кратко опишем важнейшие из этих открытий, имеющие непосредственное отношение к нашей теме. Эрстед первый установил полную взаимосвязь электрических и магнитных явлений. Экспериментируя с гальваническим электричеством (так в то время называли электрические явления, возникающие от электрохимических источников тока, в отличие от явлений, вызываемых электростатической машиной), Эрстед обнаружил отклонения стрелки магнитною компаса, находящегося вблизи, электрического источника тока (гальванической батареи), в момент замыкания и размыкания электрической цепи. Он установил, что это отклонение зависит от места расположения магнитного компаса. Огромная заслуга Эрстеда в том, что он сам оценил важность открытого им явления. Рушились, казалось бы, незыблемые в течение более двухсот лет представления, основанные на работах Джильберта, о независимости магнитных и электрических явлений. Эрстед получил достоверный экспериментальный материал, на основе которого он пишет, а затем издает книгу "Опыты, относящиеся к действию электрического конфликта на магнитную стрелку". Кратко свое достижение он формулирует так: "Гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной иглой, отклоняет ее северный конец к востоку, а, проходя в том же направлении под иглой, отклоняет ее на запад".

Ясно и глубоко раскрыл смысл опыта Эрстеда, являющегося первым достоверным доказательством взаимосвязи магнетизма и электричества, французский физик Андре Ампер. Ампер был очень разносторонним ученым, прекрасно владевшим математикой, увлекавшимся химией, ботаникой и древней литературой. Он был великолепным популяризатором научных открытий. Заслуги Ампера в области физики можно сформулировать так: он создал новый раздел в учении об электричестве - электродинамику, охватывающую все проявления движущегося электричества. Источником движущихся электрических зарядов у Ампера была гальваническая батарея. Замыкая цепь, он получал движение электрических зарядов. Ампер показал, что покоящиеся электрические заряды (статическое электричество) не действуют на магнитную стрелку - не отклоняют ее. Говоря современным языком, Амперу удалось выявить значение переходных процессов (включение электрической цепи).

Майкл Фарадей завершает открытия Эрстеда и Ампера - создает стройное логическое учение об электродинамике. В то же время ему принадлежит ряд самостоятельных крупнейших открытий, несомненно, оказавших важное влияние на применение электричества и магнетизма в медицине и биологии. Майкл Фарадей не был математиком подобно Амперу, в своих многочисленных публикациях он не использовал ни одного аналитического выражения. Талант экспериментатора, добросовестного и трудолюбивого, позволил Фарадею компенсировать отсутствие математического анализа. Фарадей открывает закон индукции. Как он сам говорил: "Я нашел способ превращения электричества в магнетизм и наоборот". Он обнаруживает самоиндукцию.

Завершением крупнейших исследований Фарадея является открытие законов прохождения электрического тока через проводящие жидкости и химического разложения последних, наступающего под воздействием электрического тока (явление электролиза). Фарадей так формулирует основной закон: "Количество вещества, находящегося на токопроводящих пластинках (электродах), погруженных в жидкость, зависит от силы тока и от времени его прохождения: чем больше сила тока и чем дольше он проходит, тем больше количества вещества выделится в раствор".

Россия оказалась одной из стран, где открытия Эрстеда, Араго, Ампера, а главное, Фарадея нашли непосредственное развитие и практическое применение. Борис Якоби, используя открытия электродинамики, создает первое судно с электродвигателем. Эмилю Ленцу принадлежит ряд работ, представляющих огромный практический интерес в разных областях электротехники и физики. Его имя связывают обычно с открытием закона теплового эквивалента электрической энергии, называемого законом Джоуля - Ленца. Кроме того, Ленц установил закон, названный его именем. На этом заканчивается период создания основ электродинамики.

1 Применение электричества в медицине и биологии в XIX веке

П. Н. Яблочков, расположив параллельно два угля, разделенных расплавляющейся смазкой, создает электрическую свечу - простой источник электрического света, способный освещать в течение нескольких часов помещение. Свеча Яблочкова просуществовала три-четыре года, найдя применение почти во всех странах мира. Ее заменила более долговечная лампа накаливания. Повсеместно создаются электрические генераторы, получают распространение и аккумуляторы. Области применения электричества все увеличиваются.

Становится популярным применение электричества и в химии, начало которому положил М. Фарадей. Перемещение вещества - движение зарядоносителей - нашло одно из первых своих применений в медицине для ввода соответствующих лекарственных соединений в тело человека. Суть метода состоит в следующем: нужным лекарственным соединением пропитывается марля или другая любая ткань, которая служит прокладкой между электродами и телом человека; она располагается на участках тела, подлежащих лечению. Электроды подключаются к источнику постоянного тока. Метод подобного ввода лекарственных соединений, впервые примененный во второй половине XIX века, широко распространен и сейчас. Он носит название электрофореза или ионофореза. О практическом применении электрофореза читатель может узнать в главе пятой.

Последовало еще одно, имеющее огромную важность для практической медицины открытие в области электротехники. 22 августа 1879 г. английский ученый Крукс сообщил о своих исследованиях катодных лучей, о которых в то время стало известно следующее:

При пропускании тока высокого напряжения через трубку с очень сильно разреженным газом из катода вырывается поток частичек, несущихся с громадной скоростью. 2. Эти частички движутся строго прямолинейно. 3. Эта лучистая энергия может производить механическое действие. Например, вращать маленькую вертушку, поставленную на ее пути. 4. Лучистая энергия отклоняется магнитом. 5. В местах, на которые падает лучистая материя, развивается тепло. Если катоду придать форму вогнутого зеркала, то в фокусе этого зеркала могут быть расплавлены даже такие тугоплавкие сплавы, как, например, сплав иридия и платины. 6. Катодные лучи - поток материальных телец меньше атома, а именно частиц отрицательного электричества.

Таковы первые шаги в преддверии нового крупного открытия, сделанного Вильгельмом Конрадом Рентгеном. Рентген обнаружил принципиально иной источник излучения, названный им Х-лучами (X-Ray). Позже эти лучи получили название рентгеновских. Сообщение Рентгена вызвало сенсацию. Во всех странах множество лабораторий начали воспроизводить установку Рентгена, повторять и развивать его исследования. Особенный интерес вызвало это открытие у врачей.

Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами, их пациентами, подозревавшими, что в их теле находятся проглоченные иголки, металлические пуговицы и т. д. История медицины не знала до этого столь быстрой практической реализации открытий в области электричества, как это случилось с новым диагностическим средством - рентгеновскими лучами.

Заинтересовались рентгеновскими лучами сразу и в России. Еще не было официальных научных публикаций, отзывов на них, точных данных об аппаратуре, лишь появилось краткое сообщение о докладе Рентгена, а под Петербургом, в Кронштадте, изобретатель радио Александр Степанович Попов уже приступает к созданию первого отечественного рентгеновского аппарата. Об этом мало известно. О роли А. С. Попова в разработке первых отечественных рентгеновских аппаратов, их внедрении, пожалуй, впервые стало известно из книги Ф. Вейткова. Очень удачно дополнена она дочерью изобретателя Екатериной Александровной Кьяндской-Поповой, опубликовавшей совместно с В. Томат в журнале "Наука и жизнь" (1971, № 8) статью "Изобретатель радио и Х-луча".

Новые достижения электротехники соответственно расширили возможности исследования "животного" электричества. Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышцы возникает электрический потенциал. Разрезав мышцу поперек волокон, он соединил ее с одним из полюсов гальванометра, а продольную поверхность мышцы соединил с другим полюсом и получил потенциал в пределах 10-80 мВ. Значение потенциала обусловлено видом мышц. По утверждению Маттеучи, "биоток течет" от продольной поверхности к поперечному разрезу и поперечный разрез является электроотрицательным. Этот любопытный факт был подтвержден опытами на разных животных - черепахе, кролике, крысе и птицах, проведенными рядом исследователей, из которых следует выделить немецких физиологов Дюбуа-Реймона, Германа и нашего соотечественника В. Ю. Чаговца. Пельтье в 1834 г, опубликовал работу, в которой, излагались результаты исследования взаимодействия биопотенциалов с протекающим по живой ткани постоянным током. Оказалось, что полярность биопотенциалов при этом меняется. Изменяются и амплитуды.

Одновременно наблюдались изменения и физиологических функций. В лабораториях физиологов, биологов, медиков появляются электроизмерительные приборы, обладающие достаточной чувствительностью и соответствующими пределами измерений. Накапливается большой и разносторонний экспериментальный материал. На этом заканчивается предыстория использования электричества в медицине и изучения "животного" электричества.

Появление физических методов, дающих первичную биоинформацию, современное развитие электроизмерительной техники, теории информации, автометрии и телеметрии, комплексирование измерений - вот что знаменует собой новый исторический этап в научно-техническом и медико-биологическом направлениях использования электричества.

2 История лучевой терапии и диагностики

В конце девятнадцатого века были сделаны весьма важные открытия. Впервые человек своим глазом мог увидеть что-то скрывающееся за непрозрачной для видимого света преградой. Конрадом Рентгеном были открыты так называемые Х-лучи, которые могли проникать через оптически непрозрачные преграды и создавать теневые изображения объектов, скрытых за ними. Было открыто и явление радиоактивности. Уже в 20 веке, в 1905 году Эйндховен доказал электрическую активность сердца. С этого момента стала развиваться электрокардиография.

Медики стали получать все больше сведений о состоянии внутренних органов пациента, за которыми они не могли наблюдать без соответствующих приборов, созданных инженерами на основе открытий физиков. Наконец медики получили возможность наблюдать и за функционированием внутренних органов.

К началу второй мировой войны ведущие физики планеты, еще до появления сведений о делении тяжелых атомов и колоссальном выделении энергии при этом, пришли к выводу о том, что возможно создание искусственных радиоактивных изотопов. Количество радиоактивных изотопов не ограничивается только известными естественно радиоактивными элементами. Они известны у всех химических элементов таблицы Менделеева. Ученые получили возможность проследить за их химической историей, не нарушая течения исследуемого процесса.

Еще в двадцатые годы были предприняты попытки использования естественно радиоактивных изотопов из радиевого семейства для определения скорости кровотока у человека. Но такого рода исследования не имели широкого применения даже в научных целях. Более широкое использование в медицинских исследованиях, в том числе и диагностических, радиоактивные изотопы получили в пятидесятые годы после создания ядерных реакторов, в которых достаточно просто можно было получать большие активности искусственно радиоактивных изотопов.

Наиболее известный пример одного из первых применений искусственно радиоактивных изотопов - это использование изотопов йода для исследований щитовидной железы. Метод позволил понять причину заболеваний щитовидной железы (зоб) для определенных областей проживания. Была показана связь между содержанием йода в рационе питания и заболеваниями щитовидной железы. В результате этих исследований мы с Вами потребляем поваренную соль, в которую сознательно введены добавки неактивного йода.

В начале для исследования распределения радионуклидов в органе применялись одиночные сцинтилляционные детекторы, которые точка за точкой просматривали исследуемый орган, т.е. сканировали его, перемещаясь по линии меандра над всем исследуемым органом. Такое исследование называли сканированием, а приборы используемые для этого носили название сканеров (скеннеров). С разработкой позиционно чувствительных детекторов, которые кроме факта регистрации попавшего гамма кванта, определяли и координату его попадания в детектор, появилась возможность просматривать сразу весь исследуемый орган без движения детектора над ним. В настоящее время получение изображения распределения радионуклидов в исследуемом органе носит название сцинтиграфии. Хотя, вообще говоря, термин сцинтиграфия введен в 1955 году (Andrews с соавторами) и вначале относился к сканированию. Среди систем со стационарными детекторами наибольшее распространение получила так называемая гамма- камера, впервые предложенная Anger в 1958 году.

Гамма-камера позволила существенно снизить время получения изображения и в связи с этим применять более короткоживущие радионуклиды. Использование короткоживущих радионуклидов существенно уменьшает дозу радиационного воздействия на организм обследуемого, что позволило увеличить активности РФП, вводимые пациентам. В настоящее время при использовании Тс-99т время получения одного изображения составляет доли секунды. Такие короткие времена получения отдельного кадра привели к появлению динамической сцинтиграфии, когда за время исследования получается ряд последовательных изображений исследуемого органа. Анализ такой последовательности позволяет определить динамику изменения активности как в органе в целом, так и его отдельных частях, т. е. происходит сочетание динамических и сцинтиграфических исследований.

По мере развития техники получения изображений распределения радионуклидов в исследуемом органе встал вопрос и о методиках оценки распределений РФП в пределах обследуемой области, особенно в динамической сцинтиграфии. Сканограммы обрабатывались в основном визуально, что стало неприемлемо при развитии динамической сцинтиграфии. Основной неприятностью была невозможность построения кривых отражающих изменение активности РФП в исследуемом органе или в его отдельных частях. Можно конечно отметить еще целый ряд недостатков получаемых сцинтиграмм - наличие статистического шума, невозможность вычитания фона окружающих органов и тканей, невозможность получения в динамической сцинтиграфии на основе ряда последовательных кадров суммарного изображения.

Все это привело к появлению систем цифровой обработки сцин- тиграмм на основе ЭВМ. В 1969 году Jinuma с соавторами применил возможности ЭВМ для обработки сцинтиграмм, что позволило получить более достоверную диагностическую информацию и в существенно большем объеме. В связи с этим в практику работы отделений радионуклидной диагностики стали весьма интенсивно внедряться системы сбора и обработки сцинтиграфической информации на основе ЭВМ. Такие отделения стали первыми практическими медицинскими подразделениями, в которых широко внедрялись ЭВМ.

Разработка цифровых систем сбора и обработки сцинтиграфической информации на основе ЭВМ заложила основы принципов и методов обработки медицинских диагностических изображений, которые были использованы и при обработке изображений полученных с использованием других медико-физических принципов. Это относится к рентгеновским изображениям, изображениям, получаемым в УЗИ-диагностике и, конечно же, к компьютерной томографии. С другой стороны развитие методик компьютерной томографии привело в свою очередь к созданию эмиссионных томографов как однофотон- ных, так и позитронных. Развитие высоких технологий по использованию радиоактивных изотопов в медицинских диагностических исследованиях и все большее их использование в клинической практике привело к появлению самостоятельной медицинской дисциплины радиоизотопной диагностики, которая в дальнейшем по международной стандартизации получила название радионуклидной диагностики. Чуть позднее появилось понятие ядерная медицина, объединившее, методы использования радионуклидов, как для диагностики, так и для терапии. С развитием радионуклидной диагностики в кардиологии, (в развитых странах до 30 % от общего числа радионуклидных исследований стали кардиологическими), появился термин ядерная кардиология.

Еще одна исключительно важная группа исследований с использованием радионуклидов - это in vitro исследования. Этот тип исследований не предполагает введения радионуклидов в организм пациента, а использует радионуклидные методы для определения концентрации гормонов, антител, лекарств и других клинически важных веществ в пробах крови или тканей. Кроме того, современные биохимия, физиология и молекулярная биология не могут существовать без методов радиоактивных индикаторов и радиометрии.

В нашей стране массовое внедрение методов ядерной медицины в клиническую практику началось с конца 50-х годов после выхода в свет приказа Министра Здравоохранения СССР (№248 от 15 мая 1959г.) о создании в крупных онкологических учреждениях отделений радиоизотопной диагностики и строительстве типовых радиологических корпусов, некоторые из них функционируют до настоящего времени. Большую роль сыграло и постановление ЦК КПСС и Совета Министров СССР от 14 января 1960 года №58 "О мерах по дальнейшему улучшению медицинского обслуживания и охраны здоровья населения СССР", где предусматривалось широкое внедрение методов радиологии в медицинскую практику.

Быстрое развитие ядерной медицины за последние годы привело к возникновению дефицита врачей-радиологов и инженеров, являющихся специалистами в области радионуклидной диагностики. Результат применения всех радионуклидных методик зависит от двух важнейших моментов: от детектирующей системы с достаточной чувствительностью и разрешающей способностью с одной стороны, и от радиофармацевтического препарата, который обеспечивает получение приемлемого уровня накопления в желаемом органе или ткани с другой стороны. Поэтому каждый специалист в области ядерной медицины должен обладать глубоким пониманием физических основ радиоактивности и детектирующих систем так же, как знанием химии радиофармацевтических препаратов и процессов, определяющих их локализацию в определенных органах и тканях. Данная монография не является простым обзором достижений в области радионуклидной диагностики. В ней представлено много оригинального материала, являющегося результатом исследований ее авторов. Многолетний опыт совместной работы коллектива разработчиков отдела радиологической аппаратуры ЗАО "ВНИИМП-ВИТА", Онкологического центра РАМН, Кардиологического НПК МЗ РФ, НИИ кардиологии Томского научного центра РАМН, Ассоциации медицинских физиков России позволил рассмотреть теоретические вопросы формирования радионуклидных изображений, практическую реализацию подобных методик и получение максимально информативных результатов диагностики для клинической практики.

Развитие медицинской техники в области радионуклидной диагностики неразрывно связано с именем Сергея Дмитриевича Калашникова, который много лет работал в этом направлении во Всесоюзном научно-исследовательском институте медицинского приборостроения и руководил созданием первой российской томографической гамма-камеры ГКС-301.

5. Краткая история ультразвуковой терапии

Ультразвуковая техника начала развиваться во время Первой мировой войны. Именно тогда, в 1914 г., испытывая в большом лабораторном аквариуме новый ультразвуковой излучатель, выдающийся французский физик- экспериментатор Поль Ланжевен обнаружил, что рыбы при воздействии ультразвука забеспокоились, заметались, потом успокоились, но через некоторое время стали гибнуть. Так случайно был проведен первый опыт, с которого началось исследование биологического действия ультразвука. В конце 20-х годов ХХ в. были сделаны первые попытки использовать ультразвук в медицине. А в 1928 г. немецкие врачи уже применили ультразвук для лечения заболеваний уха у людей. В 1934 г. coветский отоларинголог Е.И. Анохриенко ввел ультразвуковой метод в терапевтическую практику и первым в мире осуществил комбинированное лечение ультразвуком и электрическим током. Вскоре ультразвук стал широко применяться в физиотерапии, быстро завоевав славу весьма эффективного средства. Прежде чем применить ультразвук для лечения болезней человека, действие его тщательно проверяли на животных, но новые методы в практическую ветеринарию пришли уже после того, как нашли широкое применение в медицине. Первые ультразвуковые аппараты были весьма дороги. Цена, конечно, не имеет значения, когда речь идет о здоровье людей, но в сельскохозяйственном производстве с этим приходится считаться, поскольку оно не должно быть убыточным. Первые ультразвуковые лечебные методы основывались на чисто эмпирических наблюдениях, однако параллельно с развитием ультразвуковой физиотерапии разворачивались исследования механизмов биологического действия ультразвука. Их результаты позволяли вносить коррективы в практику применения ультразвука. В 1940-1950 годах, например, полагали, что в лечебных целях эффективен ультразвук интенсивностью до 5...6 Вт/кв.см или даже до 10 Вт/кв.см. Однако вскоре применяемые в медицине и ветеринарии интенсивности ультразвука стали уменьшаться. Так в 60-е годы ХХ в. максимальная интенсивность ультразвука, генерируемого физиотерапевтическими аппаратами, уменьшилась до 2...3 Вт/кв.см, а выпускаемые в настоящее время аппараты излучают ультразвук с интенсивностью, не превышающей 1 Вт/кв.см. Но сегодня в медицинской и ветеринарной физиотерапии чаще всего используют ультразвук с интенсивностью 0,05-0,5 Вт/кв.см.

Заключение

Конечно же, мне не удалось охватить историю развития медицинской физики в полном объеме, ибо в противном случае мне бы пришлось рассказывать о каждом физическом открытии подробно. Но все же, я указал основные этапы развития мед. физики: ее истоки берут начало не в 20 веке, как считают многие, а гораздо раньше, еще в глубокой древности. На сегодняшний день открытия того времени покажутся для нас мелочами, однако на самом деле для того периода это был несомненный прорыв в развитии.

Трудно переоценить вклад физиков в развитие медицины. Взять хотя бы Леонардо да Винчи, который описал механику движений суставов. Если объективно взглянуть на его исследования, то можно понять, что современная наука о суставах включает подавляющую часть его трудов. Или Гарвей, впервые доказавший замкнутость кровообращения. Поэтому мне кажется, что мы должны ценить вклад физиков в развитие медицины.

Список использованной литературы

1. "Основы взаимодействия ультразвука с биологическими объектами." Ультразвук в медицине, ветеринарии и экспериментальной биологии. (Авторы: Акопян В.Б., Ершов Ю.А., под ред. Щукина С.И., 2005 г.)

Аппаратура и методики радионуклидной диагностики в медицине. Калантаров К.Д., Калашников С.Д., Костылев В.А. и др., под ред. Викторова В.А.

Харламов И.Ф. Педагогика. -- М.: Гардарики, 1999. - 520 с; стр. 391

Электричество и человек; Манойлов В.Е. ; Энергоатомиздат 1998, стр. 75-92

Чередниченко Т.В. Музыка в истории культуры. - Долгопрудный: Аллегро-пресс, 1994. стр. 200

Повседневная жизнь Древнего Рима через призму наслаждений, Жан-Ноэль Роббер, Молодая гвардия, 2006, стр. 61

Платон. Диалоги; Мысль, 1986, стр. 693

Декарт Р. Сочинения: В 2 т. - Т. 1. - М.: Мысль, 1989. Стр. 280, 278

Платон. Диалоги - Тимей; Мысль, 1986, стр. 1085

Леонардо да Винчи. Избранные произведения. В 2 т. Т.1./ Репринт с изд. 1935 г. - М.: Ладомир, 1995.

Аристотель. Сочинения в четырех томах. Т.1.Ред.В. Ф. Асмус. М., <Мысль>, 1976, стр. 444, 441

Список интернет-ресурсов:

Терапия звуком - Наг-Чо http://tanadug.ru/tibetan-medicine/healing/sound-healing

(дата обращения 18.09.12)

История светолечения - http://www.argo-shop.com.ua/article-172.html (дата обращения 21.09.12)

Лечение огнем - http://newagejournal.info/lechenie-ognem-ili-moksaterapia/ (дата обращения 21.09.12)

Восточная медицина - (дата обращения 22.09.12)://arenda-ceragem.narod2.ru/eto_nuzhno_znat/vostochnaya_meditsina_vse_luchshee_lyudyam

От Masterweb

04.05.2018 12:01

Медицина и физика – это две области, постоянно окружающие нас в повседневности. Ежедневно влияние физики на развитие медицины только увеличивается, медицинская отрасль за счет этого модернизируется. Это приводит к тому, что многие болезни удается вылечить или остановить их распространение и контролировать.

Применение физики в медицине неоспоримо. Фактически каждый инструмент, используемый медиками, начиная со скальпеля и заканчивая сложнейшими установками для установления точного диагноза, функционирует или изготовлен благодаря достижениями в мире физики. Стоит отметить, что физика в медицине всегда играла важную роль и когда-то эти два направления были единой наукой.

Известное открытие

Многие аппараты, изготовленные физиками, позволяют проводить медикам обследования любого рода. Исследования позволяют ставить пациентам точные диагнозы и находить разные пути для выздоровления. Первым полномасштабным вкладом в медицину было открытие Вильгельма Рентгена в области лучей, которые теперь называются его именем. Рентгеновские лучи сегодня позволяют без особого труда определять тот или иной недуг у человека, узнать детально сведения на уровне костей и так далее.

Ультразвук и его влияние на медицину


Физика в медицину внесла свой вклад еще и благодаря открытию ультразвука. Что это такое? Ультразвук – это механические колебания, частота которых составляет больше двадцати тысяч герц. Частенько ультразвук еще называют дробящим звуком. С его помощью возможно смешивать масло и воду, формируя при этом нужную эмульсию.

Ультразвук пропускается через человеческое тело и отражается от внутренних органов, а это позволяет сформировать макет организма человека и установить имеющиеся заболевания. Ультразвук помогает готовить различные лекарственные вещества, применяется для разрыхления тканей и дробления почечных камней. Используется ультразвук для безосколочной резки и сварки костей. Активно применяется он и для дезинфекции хирургических приспособлений, ингаляции.

Именно ультразвук поспособствовал тому, что был создан эхолот – прибор для установления глубины моря под корабельным днищем. Также это явление поспособствовало тому, что в последнее время было создано огромное количество чувствительных приборов, фиксирующих отраженные тканями организма слабые сигналы ультразвука. Вот так и появилась биолокация. Биолокация позволяет обнаруживать опухоли, инородные тела в теле и тканях организма. Ультразвуковое исследование, или, другими словами, УЗИ, позволяет рассмотреть камни или песок в почках, желчном пузыре, зародыша в утробе матери и даже определить пол ребенка. УЗИ открывает большие перспективы для будущих родителей и ни один центр современной медицины не обходится без этого аппарата.

Лазер в медицине


Активно в современном мире применяются лазерные технологии. Ни один центр современной медицины уже не обойдется без них. Ярчайшим примером может стать хирургия. С помощью лазерных лучей хирургам удается проводить крайне сложные операции. Мощный поток света из лазера позволяет удалять злокачественные опухоли, а для этого не потребуется даже резать тело человека. Потребуется лишь подобрать нужную частоту. Многие изобретения физиков, использующиеся в медицине, прошли испытание временем и весьма успешно.

Уникальный инструмент для хирурга

Многие современные хирурги пользуются специальными скальпелями на основе плазмы. Это инструменты, функционирующие с высокими температурами. Если их применять на практике, то кровь будет сворачиваться в один миг, а значит, у хирурга не будет никаких неудобств из-за кровотечений. Также было доказано, что после применения подобных инструментов раны человека заживают в разы быстрее.

Плазменный скальпель также понижает риск попадания в рану инфекции до минимальной отметки, при такой температуре микробы просто погибают в один момент.

Электрический ток и медицина

В том, что роль физики в медицине велика, наверное, никто и не сомневается. Обычный электрический ток также повсеместно используется медиками. Небольшие импульсы узкой направленности в определенную точку позволяют избавиться от тромбов, опухолей, и при этом стимулируется приток крови. Опять же никого резать при этом не нужно.

Оптические приборы и их роль в медицине


Не знаете, как изучение физики поможет в медицине? Яркий тому пример – оптические приборы. Это и источники света, и линзы, и световоды, и микроскопы, и лазеры и так далее. Микроскоп еще в семнадцатом веке позволил ученым заглянуть в микромир и изучить клетки, самые простые организмы, строение тканей, крови и так далее. Благодаря физике в медицине используются оптические микроскопы, предоставляющие увеличение изображения до тысячи раз. Это главный инструмент биолога и медика, что исследует микромир человека.

Роль офтальмоскопа

В медицине используются самые разные оптические приборы. Например, все бывали на приеме у офтальмолога (врача-окулиста). Вначале он проверяет зрение при помощи специальной таблицы, а затем приглашает человека в темную комнату, где через глазное зеркало или офтальмоскоп рассматривает ваши глаза. Это наглядный пример применения физики в медицине. Офтальмоскоп – это сферическое вогнутое зеркало, в котором имеется маленькое отверстие в центральной части. Если лучи от лампы, что располагается сбоку, направить с помощью прибора в исследуемый глаз, то лучи пройдут до сетчатки, часть из них отразится и выйдет обратно. Отраженные лучи попадают через отверстие в зеркале в глаз врача, и он видит изображение глазного дна человека. Чтобы увеличить изображение, врач рассматривает глаз через собирающую линзу и использует ее в качестве лупы. Таким же образом врач-оториноларинголог рассматривает уши, нос и горло.

Появление эндоскопа и его роль в медицине


Основные задачи физики в медицине – это изобретение полезных приборов и технологий, что позволят эффективнее лечить людей. В конце двадцатого столетия физики создали уникальный прибор для медиков – эндоскоп, или «телевизор». Прибор позволяет увидеть изнутри трахеи, бронхи, пищевод, желудок человека. Состоит устройство из миниатюрного светового источника и смотровой трубки – сложного прибора из призм и линз. Для проведения исследования желудка пациенту потребуется заглотить эндоскоп, прибор будет продвигаться по пищеводу постепенно и окажется в желудке. Благодаря источнику света желудок будет освещен изнутри, а лучи, отраженные от стенок желудка, пройдут через смотровую трубку и выведутся в глаза доктора с помощью специальных световодов.

Световоды являют собой волоконные оптические трубки, у которых толщина соизмерима с толщиной человеческого волоса. Вот так световой сигнал полностью и без искажений передается в глаз врачу, формируя в нем изображения освещенного участка в желудке. Доктор сможет наблюдать и фотографировать язвы на стенках желудка, кровотечения. Исследование этим прибором называется эндоскопией.

Эндоскоп позволяет также ввести определенное количество лекарства в нужном участке и остановить таким образом кровотечение. С помощью эндоскопов также возможно облучать злокачественную опухоль.

Поговорим о давлении


Для чего нужна физика в медицине, уже ясно, ведь именно физика способствует появлению инновационных методик лечения в медицине. Когда-то инновацией было измерение кровяного давления. Как все происходит? На правую руку пациента доктор надевает манжету, что соединена с манометром, и эту манжету накачивают воздухом. К артерии прикладывается фонендоскоп, и при постепенном понижении давления в манжете прослушиваются удары звуков в фонендоскопе. Значение давления, при котором удары начинаются, называют верхним, а значение, при котором звуки прекращаются, – нижним. Нормальное давление у человека – 120 на 80. Этот способ измерения давления был предложен в 1905 году русским врачом Николаем Сергеевичем Коротковым. Он был участником Русско-японской войны и с тех пор, как он изобрел методику, слышимые в фонендоскопе удары именуются звуками Короткова. Природа этих звуков была неясна почти до конца двадцатого века, пока механиками не было допущено следующее пояснение: кровь движется по артерии под действием сердечных сокращений, а изменение давления крови распространяется по стенкам артерии в виде пульсовой волны.

Вначале доктор накачивает воздух в манжету до уровня, что превышает верхнее давление. Артерия под манжетой находится в сплющенном состоянии на протяжении всего цикла сердечных сокращений, после начинается постепенное выпускание воздуха из манжеты, и когда давление в ней становится равным верхней отметке, то артерия хлопком расправляется и пульсации кровотока приводят в колебание окружающие ткани. Врач слышит при этом звук и отмечает верхнее давление. При понижении давления в манжете совпадения все будут слышны в фонендоскопе, но как только давление в манжете достигнет нижней отметки, звуки прекратятся. Вот так врач регистрирует нижнюю границу.

Мысли можно «увидеть»?

Уже много лет ученых интересует, как устроен мозг человека и его работа. Сегодня исследователи имеют реальную возможность наблюдать на экране работу человеческого мозга, а также проследить за «течением мысли». Все стало возможным благодаря прекрасному прибору – томографу.

Оказалось, что, к примеру, при обработке зрительных данных увеличивается кровоток в затылочную зону мозга, а при обработке звуковых данных – в височные доли и так далее. Вот так один прибор позволяет ученым использовать принципиально новые возможности для изучения мозга человека. Сейчас томограммы широко применяются в медицине, они помогают диагностировать разные заболевания, неврозы.

Все для людей


Людей беспокоит их личное здоровье и благополучие близких им людей. В современном мире много разной техники, которую можно применять даже дома. К примеру, есть измерители нитратов в овощах и фруктах, глюкометры, дозиметры, электронные тонометры, метеостанции для дома и так далее. Да, не все вышеупомянутые приборы относятся непосредственно к медицине, но они помогают людям поддержать здоровье на должном уровне. Помочь человеку разобраться в устройстве приборов и их работе может школьная физика. В медицине она функционирует по тем же законам, что и в жизни.

Физика и медицина связаны между собой прочными узами, которые не разрушить.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина « физика » сохранилось до конца 17 века. МЕДИЦИНА [латинское medicina (ars) -- врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Вершиной врачебного искусства в древнем мире была деятельность Гиппократа. Анатомо-физиологические открытия А. Везалия, У. Гарвея, труды Парацельса, клиническая деятельность А. Паре и Т. Сиденхема способствовали становлению медицины на основе опытного знания.

Физика и медицина… Наука о явлениях природы и наука о болезнях человека, их лечении и предупреждении… В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы ни применялись физические знания и приборы. рентгеновский иридодиагностика скальпель хирургия

Использование достижений физики в лечении заболеваний:

Становление научной медицины было бы невозможно без достижений в области естествознания и техники, методов объективного исследования больного и способов лечения.

В процессе развития медицина дифференцировалась на ряд самостоятельных отраслей.

В терапии, хирургии и др. областях медицины широко используются достижения физической науки и техники.

Физика помогает диагностике заболеваний.

В диагностике заболеваний широко применяются рентгеновские лучи, ультразвуковое обследование, иридодиагностика, радиодиагностика.

Рентгенология - область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем и диагностики заболеваний. Рентгеновские лучи открыл немецкий физикВильгельм Рентген (1845 - 1923).

Рентгеновские лучи.

Рентгеновские лучи - не видимое глазом электромагнитное излучение.

Проникают через некоторые непрозрачные для видимого света материалы. Рентгеновские лучи применяют в рентгеновском структурном анализе, медицине и др.

Проникая сквозь мягкие ткани, рентгеновские лучи высвечивают кости скелета и внутренние органы. На снимках, получаемых с помощью рентгеновской аппаратуры, можно выявить болезнь на ранних стадиях и примять необходимые меры. Однако нужно считаться с тем, что любое облучение безопасно лишь в определённых дозах - недаром работа в рентгеновском кабинете считается вредной для здоровья.

Помимо рентгена, сегодня применяют такие методы диагностики:

Ультразвуковое обследование (исследование, когда высокочастотный звуковой луч прощупывает наш организм, словно эхолот - морское дно, и создаёт его «карту», отмечая все отклонения от нормы).

Ультразвук.

Ультразвук - не слышимые человеческим ухом упругие волны.

Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин.

Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и других процессов и в медицине -- для диагностики и лечения.

В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 - 44 кГц и от 800 кГц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Специальными приборами ультразвук можно сфокусировать и точно направить на небольшой участок ткани - например, на опухоль. Под действием сфокусированного луча высокой интенсивности, местно, клетки нагреваются до температуры 42°C. Раковые клетки начинают гибнуть при повышении температуры, и рост опухоли замедляется.

Иридодиагностика - метод распознавания болезней человека путем осмотра радужной оболочки глаза. Основана на представлении о том, что некоторые заболевания внутренних органов сопровождаются характерными внешними изменениями определенных участков радужной оболочки.

Радиодиагностика. Основана на использовании радиоактивных изотопов. Например, для диагностики и лечения заболеваний щитовидной железы применяют радиоактивные изотопы йода.

Лазер как физический прибор. Лазер (оптический квантовый генератор)-- усиление света в результате вынужденного излучения, источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология).

Использование лазеров в хирургии:

С их помощью выполняются сложнейшие операции на мозге.

Лазер используют в онкологи. Мощный лазерный пучок соответствующего диаметра уничтожает злокачественную опухоль.

Мощными лазерными импульсами «приваривают» отслоившуюся сетчатку и выполняют другие офтальмологические операции.

Плазменный скальпель.

Кровотечение - неприятная помеха при операциях, так как оно ухудшает обзор операционного поля и может привести к обескровливанию организма.

В помощь хирургу были созданы миниатюрные генераторы высокотемпературной плазмы.

Плазменный скальпель рассекает ткань, кости без крови. Раны после операции заживают быстрее.

В медицине широко применяются приборы и аппараты, способные временно заменить органы человека. Например, в настоящее время медики используют аппараты искусственного кровообращения. Искусственное кровообращение - временное выключение сердца из кровообращения и осуществление циркуляции крови в организме с помощью аппарата искусственного кровообращения (АИК).

Дата создания: 2014/04/01

«Все своё ношу с собой» - сказал греческий философ Биант, подчеркивая, что главное богатство человека - он сам, его здоровье. На протяжении веков люди вырабатывали правила оптимального поведения, следуя которым можно с наибольшей эффективностью поддерживать здоровье тела и духа. Здоровье каждого человека является не только личным делом, но и главной общественной ценностью.

В настоящее время стало больше возможностей для укрепления и поддержки здоровья населения России, благодаря реализации приоритетного национального проекта « Здоровья». Для страны, которая ориентируется на инновационный путь развития, жизненно важно находить не только новые методы лечения различных заболеваний, но и развивать современные методы диагностики по предупреждению и выявлению заболеваний. Для этого в учреждения здравоохранения поступает новое медицинское оборудование, внедряются инновационные методы диагностики и лечения заболеваний. Вновь население России стало проходить диспансеризацию.

Ультразвук в медицине

Ультразвук — это механические колебания с частотой более 20 000 герц. Ультразвук часто называют дробящим звуком. С его помощью можно, например, «смешать» масло с водой и образовать из этих двух несмешивающихся в обычных условиях жидкостей эмульсию. Эта способность ультразвука дробить и измельчать различные вещества нашла применение в фармакологии — для приготовления смесей из лекарственных веществ и в терапии — для разрыхления тканей и дробления некоторых видов почечных камней. Нашел применение ультразвук и в хирургии. С его помощью производится безосколочная резка и сварка костей.

А благодаря способности ультразвука убивать микробы, бактерии, инфузории, головастиков и даже маленьких рыбок его стали применять для стерилизации хирургических инструментов, различных лекарственных веществ и для ингаляции.

Известно, что ультразвук отражается от различных препятствий. Это его свойство было использовано при создании эхолота — прибора для измерения глубины моря под днищем корабля. А в последние годы благодаря созданию очень чувствительных приборов, способных фиксировать отраженные различными тканями организма слабые ультразвуковые сигналы, возникла ультразвуковая биолокация. Сегодня ультразвуковая биолокация позволяет обнаружить опухоли и различные инородные тела (кусочки стекла или дерева) в тканях человека. Ультразвуковое исследование (УЗИ) позволяет «увидеть» песок или камни в почках и в желчном пузыре, зародыш в материнской утробе и даже определить пол будущего ребенка.

Конечно, перспективы, открываемые УЗИ, очень заманчивы. Кому же из будущих родителей не захочется «взглянуть» на своего ребеночка? Но, оказывается, воздействие ультразвукового излучения на биологические объекты пока еще до конца не изучено. А некоторые биологи сегодня даже считают, что УЗИ вызывает стресс у зародыша.

Оптические приборы в медицине

Сегодня медики широко применяют в своей практике различные оптические приборы. Это и различные источники света, и линзы, и призмы, и микроскопы, и световоды, и лазеры и т. п.

Микроскоп уже в конце XVII в. позволил исследователям заглянуть в микромир, увидеть и изучить жизнь клетки и простейших организмов, ис-следовать строение крови, тканей и т. д. И сегодня оптические микроскопы, дающие увеличение изображения от 15 до 1000 раз, являются основными приборами биологов и медиков, исследующих микромир.

Применение оптических приборов в медицине очень разнообразно. Например, все мы бывали на приеме у врача-окулиста, или офтальмолога. Обычно врач сначала с помощью специальной таблицы проверяет остроту вашего зрения, а затем приглашает человека в затемненную комнату, где через глазное зеркало, называемое офтальмоскопом, что-то рассматривает в глазах.

Офтальмоскоп — это вогнутое сферическое зеркало с небольшим отверстием в его центре. Если лучи света от лампы, расположенной несколько сбоку, направить с помощью офтальмоскопа в исследуемый глаз, то лучи пройдут до сетчатки, частично отразятся от нее и выйдут назад. Эти отраженные сетчаткой глаза пациента лучи попадают через отверстие в зеркале в глаз врача и врач видит изображение глазного дна пациента. Для увеличения этого изображения врач часто рассматривает ваш глаз через собирающую линзу, используя ее как лупу.

Аналогичным образом врач-отолоринголог с помощью вогнутого зеркала рассматривает ваши уши, горло и нос.

В конце XX в. физики создали новый медицинский прибор, позволяющий врачу увидеть изнутри трахеи» бронхи, пищевод и желудок пациента. Называется этот прибор эндоскоп, или просто «телевизор». Состоит эндоскоп из миниатюрного источника света и смотровой трубки — сложного оптического прибора, состоящего из большого числа линз и призм. При проведении исследования желудка пациент заглатывает эндоскоп, и, продвигаясь по пищеводу, эндоскоп оказывается в желудке. Источник света освещает желудок изнутри, и отраженные стенками желудка лучи проходят через смотровую трубку и выводятся в глаз врача через специаль¬ные световоды.

Световоды представляют собой волоконные оптические трубки, толщина которых соизмерима с толщиной человеческого волоса. Световой сигнал вследствие явления полного внутреннего отражения стенок трубки полностью и без искажений передается в глаз врача, образуя в нем изображение освещенного в данный момент участка желудка. Таким образом, врач может наблюдать и фотографировать язвы стенки желудка и кровотечение тканей стенки желудка. А называется такое исследование — эндоскопия.

С помощью эндоскопа врач может также ввести в нужное место лекарственные вещества и остановить кровотечение. Используя на практике закон обратимости хода световых лучей, с помощью эндоскопа можно облучать злокачественную опухоль — излучением радиоактивного препарата.

Лазеры в медицине

В 1964 г. советские физики Н. Г.Басов и А. М. Прохоров получили Нобелевскую премию за изобретение лазера. Лазеры способны генерировать электромагнитное излучение в диапазонах инфракрасного, видимого и ультрафиолетового света. Толщину лазерного луча можно уменьшить до размеров паутины, а высокую плотность его энергии можно сконцентрировать в точке размером в 1/50 толщины человеческого волоса. Совершенно особого разговора заслуживает применение лазеров в медицине. Ещё на заре развития лазерной техники медиков привлекла возможность использования лазеров в хирургии. Уже в середине 60-ых годов XX века были построены лазерные установки, которые с успехом использовались при хирургических операциях. В этих установках лазер соединен с гибким световодом, изготовленным из тончайших стеклянных или пластмассовых трубок (все те же оптические волокна). На конце световода закреплена головка с фокусирующей линзой. Световод вводится внутрь организма через небольшой разрез или другим доступным способом. Манипулируя световодом, хирург направляет луч лазера на оперируемый объект, оставляя нетронутыми соседние органы и ткани. При этом достигается высокая точность и стерильность оперативного вмешательства. При таких операциях значительно сокращается кровопотеря, что облегчает протекание послеоперационной реабилитации.

Особенно широкое применение нашли лазерные инструменты в хирургии глаза. Глаз, как известно, представляет орган, обладающий очень тонкой структурой. В хирургии глаза особенно важны точность и быстрота манипуляций. Кроме того, выяснилось, что при правильном подборе частоты излучения лазера оно свободно проходит через прозрачные ткани глаза, не оказывая на них никакого действия. Это позволяет делать операции на хрусталике глаза и глазном дне, не делая никаких разрезов вообще. В настоящее время успешно проводятся операции по удалению хрусталика путём испарения его очень коротким и мощным импульсом. При этом не происходит повреждение окружающих тканей, что ускоряет процесс заживления, составляющий буквально несколько часов. В свою очередь, это значительно облегчает последующую имплантацию искусственного хрусталика. Другая успешно освоенная операция - приваривание отслоившейся сетчатки.

Лазеры довольно успешно применяются и в лечении таких распространённых сейчас заболеваний глаза как близорукость и дальнозоркость. Одной из причин этих заболеваний является изменение в силу каких-либо причин конфигурации роговицы глаза. С помощью очень точно дозированных облучений роговицы лазерным излучением можно исправить её изъяны, восстановив нормальное зрение.

Для проведения операций на тканях с обильным кровоснабжением хирурги используют так называемый бескровный скальпель. Бескровный скальпель — это лазерный луч. А назвали его так потому, что, разрезая ткани, луч лазера одновременно «заваривает» все поврежденные кровеносные сосуды и не допускает кровотечений в области разреза. Луч лазера с помощью световода толщиной с иголочку можно ввести и во внутренние органы и ткани человека. Различные частоты и мощности лазерного излучения оказывают на биологические ткани различные действия. Простейшим из этих действий является прогрев, оказывающий на некоторые ткани лечебное действие. Например, уже в начале XXI в, медики обнаружили, что при прогревании лазерным лучом межпозвоночных дисков человека происходит регенерация хрящевой ткани дисков. А это означает, что стертые и «изношенные» с годами межпозвоночные диски можно восстановить и вернуть «молодость» и подвижность позвоночнику пожилого человека. Таким образом человеку, видимо, удастся избежать «мести» природы за его прямохождение.

Сегодня лазерные технологии используются для лечения ЛОР - заболеваний: насморка, синусита, аденоид, тонзиллита, отита и даже храпа.

Измерение давления крови у человека

Когда человек приходит на прием к педиатру или к терапевту, врач обязательно измеряет нам температуру и кровяное давление. Но как измеряют температуру и в чем секрет медицинского термометра, люди, конечно, знают. А вот как измеряют давление крови у человека. Измеряют давление с помощью манометра и фонендоскопа.

На правую руку врач надевает манжету, соединенную с манометром, и накачивает в манжету воздух. Фонендоскоп врач прикладывает к артерии и, постепенно понижая давление в манжете, ждет появления звуков ударов в фонендоскопе. То значение давления, при котором начинаются удары, называют «верхним» значением давления, а то значение, при котором удары прекращаются — «нижним» значением давления. При этом врач скажет, что у пациента давление 120 на 80 и что это давление считается для человека нормальным.

Рассмотренный способ измерения давления в 1905 г. предложил русский врач, участник русско-японской войны, Николай Сергеевич Коротков, и с тех пор слышимые в фонендоскопе удары называются во всем мире звуками Короткова. Природа этих звуков оставалась неясной почти до конца XX в., пока механики; не предложили следующее объяснение природы их появления. Как известно, кровь движется по артерии под действием сокращений сердца. Изменение давления крови, вызываемое сокращением сердца, распространяется по стенкам артерии в виде пульсовой волны.

Значение давления в «гребне» волны (при сокращении сердца) — это и есть «верхнее» давление крови, а во «впадине» (при расслаблении сердца) — «нижнее». Сначала врач накачивает воздух в манжету до давления, превышающего «верхнее» кровяное давление. При этом артерия под манжетой сплющена в течение всего цикла сердечных сокращений. Затем воздух постепенно выпускают из манжеты и, когда давление в ней становится равно «верхнему» давлению крови, артерия хлопком расправляется и пульсации крови, вызываемые сокращениями сердца, приводят в колебание окружающие ткани на поверхности руки. При этом врач слышит звук и отмечает значение «верхнего» давления крови. При дальнейшем понижении давления в манжете, каждый раз, когда оно будет совпадать с давлением крови, в фонендоскопе будут слышны звуки. Но после того, как давление воздуха в манжете достигнет «нижнего» значения кровяного давления, артерия окончательно расправляется и звуки исчезают. Поэтому врач регистрирует «нижнее» значение давления крови по последнему удару. Вот таким образом механики объяснили, что звуки Короткова прослушиваются только тогда, когда давление воздуха в манжете меняется от «верхнего» до «нижнего» значений давления крови.

Можно ли «увидеть» мысль?

Как устроен и как работает мозг человека? Этот вопрос уже тысячи лет волнует ученых. А сегодня исследователи получили реальную возможность наблюдать на экране работу мозга человека и даже проследить за тем, как «течет» мысль. Эту чудесную возможность предоставил им новый прибор, который называется позитронно-эмиссионный томограф.

Принцип работы позитронно-эмиссионного томографа (или просто ПЭТ) заключается в следующем: в кровь пациента вводится содержащее радиоактивные изотопы вещество, активно перерабатываемое нейронами мозга, например глюкоза, в которой некоторые атомы углерода С заменены радиоактивными изотопами углерода С. Нейтроны мозга для своей работы требуют очень много энергии, поэтому при возбуждении различных участков коры головного мозга резко увеличивается потребление этими участками кислорода. А кислород попадает в кору c артериальной кровью, которая несет с собой и радиоактивные изотопы углерода.

При распаде радиоактивного углерода С (а период его полураспада равен 20 минутам) испускаются позитроны. Эти позитроны сталкиваются с электронами и взаимоуничтожаются, отдавая энергию в виде двух гамма-квантов, разлетающихся в противоположных направлениях. Попадая на кольцо детекторов, окружающих голову пациента, эти гамма-кванты вызывают свечение кристаллов детекторов. Компьютер регистрирует это свечение, рассчитывает положение источников гамма-излучения и выводит полученную информацию на экран томографа. Таким образом, по увеличению кровотока к различным участкам мозга удается проследить «течение» мысли человека.

Оказалось, что, например, при обработке зрительной информации увеличивается кровоток в затылочную область коры головного мозга, а при обработке звуковой информации — в височные доли коры, и т. д. Таким образом, применение позитронно-эмиссионного томографа открывает перед учеными принципиально новые возможности в изучении человеческого мозга. Сегодня томограммы мозга, полученные с помощью ПЭТ, нашли широкое применение в медицине. Так исследование мозга с помощью позитронно-эмиссионного томографа позволяет медикам диагностировать различные заболевания и неврозы.

Физиотерапевтические методы профилактики и лечения заболеваний

Современная физиотерапия очень разнообразна - это термолечение, водолечение, ультразвук и т. д.

Амплипульстерапия

Сущность метода заключается в воздействии на определенные участки тела пациента синусоидальными токами средней частоты, модулированными по амплитуде низкой частоты в пределах 10- 150 Гц. Наиболее часто в качестве несущей используется частота 5000 Гц, при которой вследствие очень малого сопротивления кожи обеспечивается хорошее прохождение тока вглубь тканей. Данную лечебную методику используют для снятия болевого синдрома.

Дарсонвализация и токи надтональной частоты

Дарсонвализация - воздействие с лечебной целью импульсным переменным синусоидальным током высокой частоты 110 кГц), высокого напряжения (20кВ) и малой силы (0,02 мА). Импульсы высокочастотного тока следуют друг за другом 50 раз в секунду. При местной дарсонвализации между электродом и кожей образуется тихий или искровой разряд, который оказывает раздражающее и даже прижигающее действие. Дарсонвализация волосистой части головы производят с помощью гребешкового электрода. Данный метод лечения применяют при различных заболеваниях нервной системы и других.

Ультравысокочастотная терапия (УВЧ - терапия)

УВЧ - терапия - лечебный метод, при котором на ткани больного воздействуют электрическим полем высокой частоты порядка 40,68 МГц мощностью от 1 до 350 Вт. Это поле подводят к больному посредством конденсаторных пластин различной величины и формы. Во время процедуры УВЧ-терапии больной должен находиться в спокойном положении, сидеть в деревянном кресле или стуле. Данную лечебную методику используют при лечении при различных воспалительных заболеваниях, при нарушении мозгового кровообращения, нервных заболеваниях и других.

Магнитотерапия

Магнитотерапия - лечебный метод, при котором на ткани больного воздействуют переменным низкочастотным магнитным полем или постоянным магнитным полем с помощью индукторов- соленоидов или постоянных магнитов, в том числе эластичных магнитов. С помощью магнитотерапии проводят лечение заболеваний легких, желудка, суставов, сосудов ног и другие.

Ультразвуковая терапия

Ультразвук представляет собой механические колебания частиц упругой среды, происходящие с частотой выше 20 кГц. В связи с тем, что ультразвуковые колебания полностью отражаются от очень тонкого слоя воздуха, их подводят через безвоздушные плотные среды - вазелиновое или другие масла, воду. Ультразвук назначают при заболеваниях суставов и на рефлексогенные зоны шейно-грудного и пояснично- крестцового отделов позвоночника, а также при заболеваниях и травмах периферических нервов, при лечении желудочно-кишечного тракта, глаз и носа.

Гальванизация

Гальванизация - метод воздействия на организм постоянным электрическим током. Аппараты для гальванизации - генераторы выпрямленного переменного низкочастотного тока(50 Гц), преобразующие его в ток постоянного направления и напряжения. Аппарат « Поток -1» предназначен для местной гальванизации и электрофореза. Лекарственный электрофорез - воздействие на организм двух факторов - электрического и фармакологического. При этом на фоне действия постоянного тока как биологического раздражителя имеет место специфическая для каждого лекарственного вещества ответная реакция организма. Направленное движение в растворах электрически заряженных частиц ионов используется для введения в организм лекарственных веществ, причем вещества вводятся со знаком их заряда при диссоциации в растворе.

Современная М. сложилась в результате длительного исторического процесса; состояние М. всегда определялось степенью развития общества, социально-экономическим строем, достижениями естествознания и техники, общим уровнем культуры. В данной статье преимущественно рассматривается развитие М. как комплекса научных дисциплин; о медицинской практике и организации здравоохранения см. также в статье и других.

Основные разделы медицины

Медицина, как комплекс научных дисциплин состоит из трёх групп: так называемые медико-биологические дисциплины; клинические дисциплины; медико-социальные и гигиенические дисциплины.

Группа клинических дисциплин, изучающих болезни человека, их лечение и предупреждение, особенно обширна и разветвлена; она включает терапию) (так называемые внутренние болезни), разделами которой являются кардиология, ревматология, пульмонология, нефрология, гастроэнтерология, гематология, клиническая эндокринология, гериатрия); фтизиатрию; педиатрию; невропатологию; психиатрию; дерматологию и ; курортологию, физиотерапию и лечебную физкультуру; медицинскую радиологию и медицинскую рентгенологию; стоматологию; акушерство и гинекологию; хирургию; травматологию и ортопедию; анестезиологию и реаниматологию; нейрохирургию; онкологию; урологию; оториноларингологию; офтальмологию и другие. Критерии вычленения самостоятельных клинических дисциплин неоднородны: преимущественная локализация изучаемых болезней в одном органе или одной системе органов (например, невропатология, офтальмология); возрастные (например, педиатрия) и половые (акушерство и гинекология) особенности пациента; особенности возбудителя заболевания и характера патологического процесса (например, фтизиатрия), диагностических и лечебных методов (например, рентгенология, хирургия, физиотерапия). Каждая из клинических дисциплин включает разделы о методах исследования больного и признаках болезней - семиотику, которая становится основой машинных методов диагностики.

Группа медико-социальных и гигиенических дисциплин, изучающих воздействие внешней среды на организм и меры улучшения здоровья населения, включает социальную гигиену и организацию здравоохранения; общую гигиену, гигиену семей и подростков, гигиену коммунальную, гигиену радиационную, гигиену труда; эпидемиологию и географию медицинскую; в эту же группу включают деонтологию медицинскую и так далее.

История медицины

Возникновение медицины и её развитие до 16 века

Зачатки врачевания и гигиенических знаний родились из наблюдений и опыта на самых ранних стадиях существования человека и закрепились в обычаях и приёмах лечения и защиты от болезней, составивших и гигиену. Значительную роль среди предупредительных и лечебных мер играло использование сил природы ( , воды), эмпирически найденных лекарственных средств растительного и животного происхождения.

Первоначально болезни рассматривались как внешнее и враждебное человеку живое существо, проникающее в тело и вызывающее болезненное состояние. Беспомощность перед силами природы, непонимание окружающего мира привели к возникновению представлений о злых духах, вселяющихся в человека, и применению ряда магических средств и приёмов лечения (заклинания), заговоры, молитвы и другое), заключавших в себе зачатки психотерапии. Развивались , шаманство; возникла жреческая, храмовая М.

Письменные памятники Древнего Востока (древнеегипетские медицинские папирусы; Хаммурапи законы; Ману законы и Аюрведа в Индии и другие) свидетельствуют, что в древних государствах законодательным путём были регламентированы условия деятельности врачей вплоть до размеров гонораров за лечение и установления различных степеней ответственности за нанесение ущерба больному.

Врачи и жрецы, наряду с мистическими, магическими формами врачевания, использовали рациональные лечебные приёмы и целебные средства народной медицины. Большое значение придавалось диететике, гигиеническим предписаниям, массажу, водным процедурам, гимнастике. Применялись хирургические методы: Трепанация черепа, в случаях трудных родов - кесарево сечение и эмбриотомия и так далее. Древнекитайская М. использовала более 2000 лекарственных средств, среди которых особое место занимали женьшень, ртуть, корень ревеня, камфора и другие. Несколько тысячелетий насчитывает своеобразный метод иглотерапии.

Обширные сведения о медицине народов, живших в 1-м тысячелетии до н. э. на территории Средней Азии, Ирана, Азербайджана и Афганистана, содержит «Авеста» (9 век до н. э. - 3 век н. э.) - священная книга зороастризма. В тот период сложились первые представления об анатомии и физиологии человека. Важное место отводилось предупреждению болезней («Вырви недуг прежде, чем он коснется тебя»), из чего следовали многие предписания гигиенического характера, в том числе о , семейной жизни, об отношении и , о запрещении пить и другое.

Медицина Древней Греции использовала накопленные древневосточными народами сведения. Тенденция к дифференциации знаний нашла отражение в культах обожествленного врача Асклепия и его дочерей: Гигиеи - охранительницы здоровья (отсюда гигиена) и Панакии - покровительницы лечебного дела (отсюда Панацея). Лечение проводилось в храмовых «асклепейонах» и домашних лечебницах. Подготовка врачей проходила по типу ремесленного ученичества. Различались врачи домашние (у знати) и странствующие (обслуживали торговцев и ремесленников). Были и так называемые общественные врачи для безвозмездного лечения бедных граждан и проведения мер против .

Раньше других сложилась Кротонская медицинская школа, представитель которой Алкмеон Кротонский (конец 6 - начало 5 веков до н. э.) разработал учение о патогенезе болезней, основывался на представлении об организме как единстве противоположностей: здоровье - гармония, - дисгармония тела и присущих ему свойств. Принцип лечения в этой школе - «противоположное лечи противоположным» - лег в основу терапевтических воззрений последующих медицинских школ. Учение о патогенезе получило дальнейшее развитие в Книдской школе (1-я половина 5 века до н. э.), разработавшей один из вариантов гуморального (от латинского humor - жидкость) учения, согласно которому сущность болезней заключается в расстройстве правильного смешения жидкостей организма под влиянием той или иной внешней причины.

Разные варианты гуморального учения наметились ещё в медицине государств Древнего Востока, но наиболее четко оно было сформулировано Гиппократом , на много веков определившим направление развития М. Гиппократ выделил М. как науку из натурфилософии, превратил наблюдение у постели больного в собственный врачебный метод исследования, указал на значение образа жизни и роли внешней среды в этиологии заболеваний, учением об основных типах телосложения и темперамента у людей обосновал индивидуальный подход к диагностике и лечению больного.

Успешную попытку заложить фундамент науки о строении и функциях человеческого тела предприняли за 3 столетия до н. э. александрийские врачи Герофил, а затем Эрасистрат, которые привели первые экспериментальные доказательства, что мозг - орган мышления, установили различия между чувствительными и двигательными нервами, описали оболочки, извилины и желудочки мозга и так далее.

Исключительное влияние на развитие медицины оказал уроженец Малой Азии врач Пергама и Древнего Рима Клавдий Гален . Во 2 веке н. э. он обобщил сведения по анатомии, физиологии, патологии, фармакологии и фармакогнозии (галеновы препараты), терапии, акушерству, гигиене, в каждую из указанных отраслей М. внёс много нового и попытался построить научную систему врачебного искусства. Гален впервые ввёл в М. вивисекционный эксперимент на животных с целью систематического изучения связей между строением и функциями органов и систем человеческого тела. Он показал, что знание анатомии и физиологии - научная основа диагностики, терапевтического и хирургического лечения и гигиенических мер. Телеологическая направленность сочинений Галена способствовала тому, что его наследие в трансформированном виде («галенизм») получило поддержку церкви и господствовало в М. Запада и Востока в течение многих веков.

Элементы санитарии и общественной гигиены, имевшиеся во всех государствах Древнего мира, достигли в Риме высокого уровня, о чём свидетельствуют остатки водопровода, канализации и бань. В Риме впервые возникли санитарная и военно-медицинская организации, а также специальная служба городских врачей, имелось санитарное законодательство.

В Византийской империи в этот период возникли крупные больницы для гражданского населения. Опустошительные эпидемии и войны обусловили создание в Европе , монастырских больниц и лазаретов.

В древнерусском феодальном государстве, наряду с монастырской М., продолжала развиваться народная М. Распространённые лечебники содержали ряд рациональных наставлений по лечению болезней и бытовой гигиене, травники (зельники) - описание лекарственных растений. Среди народных лекарей была специализация: «костоправы», «очные» и «кильные» (по грыже) лекари, «камнесеченцы», «камчужные» (по лечению ломоты, ), «почечуйные» (по ), «чепучинные» (по ) лекари, бабки-повитухи, бабки - целительницы детей и другие.

Большую роль в развитии медицины сыграли врачи Востока: ар- Рази (известен в Европе под именем Разес); Ибн Сина (Авиценна) - автор «Канона врачебной науки», энциклопедического свода медицинских знаний, и Исмаил Джурджани (12 век), отразивший достижения хорезмской М.; армянский врач Мхитар Гераци и другие. Медицинские факультеты университетов, возникших в Европе в 11 - 12 веках, не могли способствовать быстрому медицинскому прогрессу, так как были во власти схоластики, влияние которой сказывалось меньше в университетах: Салернском, Падуанском, Болонском (Италия), Краковском, Пражском и в Монпелье (Франция). Против схоластики, за опытное знание вели борьбу испанский врач Арнальдо де Виланова (13 - 14 века) и многие другие.

Медицина в 16 - 19 веках

В эпоху Возрождения уроженец Швейцарии врач Парацельс попытался переосмыслить прошлое, выступил с критикой галенизма и гуморальной патологии, с пропагандой опытного знания. Занимаясь алхимией, он положил начало крупному направлению в медицине - ятрохимии. Считая причиной хронических заболеваний расстройство химических превращений и всасывании, Парацельс ввёл в лечебную практику различные химические вещества и минеральные воды. Наиболее видным его последователем был Ян Баптист ван Гельмонт, который описал процессы ферментации в желудочном пищеварении.

Основатель современной анатомии Андреас Везалий (16 век) восстал против авторитета Галена и на основании систематического анатомирования трупов описал строение и функции тела человека. Большое влияние на М. оказали разработка и пропаганда опытного метода исследования философом-материалистом Фрэнсисом Бэконом и развитие механики. Уильям Гарвей описал в 1628 году и тем заложил фундамент нового раздела человеческого знания - физиологии. Санторио Санторио с помощью построенных им весов изучал обмен веществ в организме человека, развивал учение о солидарной патологии (от латинского solidus - плотный), согласно которому болезненное состояние - следствие нарушения движения мельчайших частиц организма; вместе с Джованни Альфонсо Борелли и Рене Декартом положил начало ятромеханическому направлению в М. (ятрофизика). Яркий пример влияния физики на медицину - изобретение увеличительных приборов (микроскопа) и развитие микроскопии. Антони ван Левенгук описал в 1676 году живые микроскопические существа, чем положил начало микробиологии. Итальянский биолог и врач Марчелло Мальпиги с помощью микроскопа открыл капиллярное кровообращение.

В области практической М. наиболее важные события 16 века - создание учения о контагиозных (заразных) болезнях (Джироламо Фракасторо) и разработка основ хирургии (Амбруаз Паре).

В 18 веке описательный период развития медицины перешёл в свою заключительную стадию - первичной систематизации. Возникали многочисленные медицинские «системы», пытавшиеся объяснить причину заболеваний и указать принцип их лечения. Немецкий врач Г. Шталь выдвинул учение об анимизме (от латинского anima - душа), согласно которому болезненный процесс - это ряд движений, совершаемых душой для удаления из тела проникших в него и приносящих вред веществ; его соотечественник Ф. Гофман доказывал, что жизнь заключается в движении, а механика - причина и закон всех явлений. Французские врачи Т. Бордё и П. Бартез выступили с учением о «жизненной силе» (витализм). Луиджи Гальвани и Алессандро Вольта исследовали «животное электричество» и лечение электрическим током; Ф. А. Месмер, знакомый с этими работами, создал учение о «животном магнетизме» (месмеризм). Систему гомеопатии основал немецкий врач Самуэль Ганеман. Шотландец У. Куллен разработал теорию «нервной патологии», исходя из признания главенствующей роли «нервного принципа» в жизнедеятельности организма; его ученик английский врач Дж. Браун построил метафизическую систему, признававшую нарушения состояния возбудимости основным фактором возникновения болезней, из чего следовала задача лечения - уменьшить или увеличить возбуждение. Французский учёный, врач Франсуа Жозеф Виктор Бруссе создал систему «физиологической медицины», связывающей происхождение болезней с избытком или недостатком раздражения желудка и использующей в качестве основного лечебного метода .

Сторонникам умозрительных метафизических систем, основанных на абсолютизации какого-либо открытия или принципа, противостояли представители опытного знания. Недоверие к «системам» проявилось в призыве английского врача, одного из основоположников клинической медицины Томаса Сиденхема и итальянского врача Дж. Б. Монтано исследовать болезни путём их тщательного наблюдения. Метод наблюдения у постели больного лег в основу клинической и педагогической деятельности Германа Бургаве, Кристофа Вильгельма Гуфеланда, Семена Герасимовича Зыбелина, Матвея Яковлевича Мудрова а и многих других. Врачи-философы 17 - 18 веков Хендрик Де Руа, Жюльен Офреде Ламетри, Пьер Жан Жорж Кабанис, а позднее последователи Михаила Васильевича Ломоносова - Ф. Г. Политковский, К. И. Щепин, Иустин Евдокимович Дядьковский и другие использовали достижения естествознания для критики умозрительных систем и обоснования материалистических представлений об организме и болезни.

Рост промышленного производства привлек внимание к изучению профессиональных заболеваний. На рубеже 17 - 18 веков итальянский врач, основоположник гигиены труда Бернардино Рамаццини положил начало изучению промышленной патологии и гигиены труда. Во 2-й половине 18 - 1-й половине 19 веков Джон Прингл и Джеймс Линд в Англии, Д. П. Синопеус, А. Г. Бахерахт в России заложили основы военной и морской гигиены (гигиена военная). Дж. Граунт и У. Петти (Англия) разработали статистические методы исследования общественного . Глубокий анализ причин высокой заболеваемости и смертности, проблем охраны народного здоровья дали в своих трудах М. В. Ломоносов и С. Г. Зыбелин. Австрийский врач Иоганн Петер Франк, несколько лет работавший в России, венгерский врач З. Г. Хусти и другие разработали концепцию «медицинской полиции», которая явилась первой попыткой систематизации и регламентации правил государственного санитарного надзора, общественной и личной гигиены. Многочисленными медицинско-топографическими описаниями и санитарно-статистическими исследованиями, проведёнными в конце 18 - 1-й половине 19 веков в России , Германии, Англии и других странах, была установлена зависимость здоровья различных групп населения от условий труда и быта.

Развитию клинической медицыны во 2-й половине 18 - 19 веков способствовала разработка новых методов объективного исследования больного: перкуссии (Леопольд Ауэнбруггер; Жан Никола Корвизар; Я. О. Саполович, Россия, и другие), аускультации (Рене Теофиль Гиацинт Лаэннек, Йосеф Шкода и другие), пальпации, эндоскопии, лабораторной диагностики. Метод сопоставления клинических наблюдений с результатами посмертных вскрытий, примененный Джованни Баттиста Морганьи, Мари Франсуа Ксавье Биша, М. Бейли (Великобритания), Рудольфом Вирховом, Карлом Рокитанским, И. Шкодой, Николаем Ивановичем Пироговым , Алексеем Ивановичем Полуниным и многими другими, породил новые дисциплины - патологическую анатомию и гистологию, которые позволили установить локализацию и материальный субстрат многих болезней.

Исключительное влияние на развитие медицины оказало использование во многих странах экспериментального метода исследования для изучения нормальных и нарушенных функций организма. Так, чех И. Прохаска, Ефрем Осипович Мухин, английский физиолог М. Холл исследовали реакции организма на влияние возбудителей и дали наиболее полные описания рефлекторных актов; шотландский анатом, физиолог и хирург Чарлз Белл и французский физиолог Франсуа Мажанди экспериментально доказали, что передние корешки спинного мозга - центробежные, двигательные, а задние - центростремительные, чувствительные, и т. п. Английского хирурга Джона Хантера считают основателем экспериментальной патологии. Объединение патологоанатомических и экспериментальных методов исследования, глубокая разработка анатомии и физиологии человека способствовали созданию естественнонаучных анатомо-физиологических основ хирургии.

Условия для теоретических обобщений в области М. были созданы прогрессом физики, химии и биологии на рубеже 18 - 19 веков: открытие роли кислорода в горении и дыхании, закона сохранения и превращения энергии, начало синтеза органических веществ (1-я половина 19 века), явившееся ударом по витализму, разработка немецким химиком Юстусом Либихом учения о полноценном , изучение химических процессов в живом организме, которое привело к развитию биохимии, и т. д.

Крупнейшее открытие 19 века - разработка клеточной теории строения организмов (Ян Эвангелиста Пуркине, Маттиас Якоб Шлейден, Теодор Шванн и другие), позволившей Р. Вирхову создать теорию целлюлярной патологии, согласно которой заболевание - чисто локальный процесс, его сущность - морфологические изменения клеточных элементов; важнейшая задача медицины - определение места, «где сидит болезнь». Подобный подход в своё время сыграл положительную роль: представление о болезни стали связывать с определенными изменениями в строении клеток и органов, возникло учение о перерождении клеток, были описаны многие формы (См. Опухоли) и других заболеваний. Однако Р. Вирхов, а особенно его ученики и последователи, не удержались от универсализации открытых ими закономерностей. Результатом явилось понимание животного организма как федерации «клеточных государств», вся патология человека была сведена к патологии клетки.

Многие современники Р. Вирхова не только не приняли эту теорию, но подвергли основные её принципы критике, признали ограниченным анатомо-локалистическое мышление в то время, когда оно ещё казалось незыблемым. Синтетическому мышлению, отражающему сложные связи организма и среды, способствовали успехи эволюционной теории (дарвинизм). Признание родства человека с животными привело к тому, что врачи стали шире применять эксперимент на животных для уяснения закономерностей жизни человека в условиях здоровья и болезни. К. Бернар в середине 19 века работал над созданием экспериментальной М., объединяющей физиологию, патологию и терапию. Многими исследованиями действия лекарств, веществ и на организм К. Бернар заложил основы экспериментальной фармакологии и токсикологии.

Немецкие гигиенисты Макс Рубнер и К. Флюгге заложили научные основы санитарной оценки воздуха, воды, почвы, жилища и одежды. Получили физиологическое обоснование гигиенические нормы питания (Карл Фойт, М. Рубнер). Значительные успехи были достигнуты в области гигиены труда и профессиональной патологии.

Промышленный переворот, рост городов, буржуазные революции конца 18 - 1-й половины 19 веков обусловили разработку социальных проблем медицины и развитие общественной гигиены. В середине 19 века накапливались материалы, свидетельствовавшие о зависимости состояния здоровья трудящихся, и прежде всего развивавшегося рабочего класса, от условий труда и быта; делались попытки научно обосновать меры общественного здравоохранения; были предложены термины «социальная гигиена» и «социальная М.». Немецкие врачи З. Нейман, Р. Вирхов и Р. Лейбушер выдвинули идею М. как социальной науки. В Великобритании представители общественного здравоохранения и фабричной инспекции (С. Смит, Джон Саймон, Э. Гринхау и другие) провели санитарные обследования условий труда, быта, питания рабочих и обосновали необходимость законов об общественном здравоохранении (1848, 1875 и другие). Карл Маркс и Фридрих Энгельс использовали материалы санитарных обследований для критики капитализма и обоснования заключений о губительном влиянии капиталистической эксплуатации на здоровье пролетариата.

В России во 2-й половине 19 века сформировалась общественная медицина. Основной трибуной пропаганды её идей являлись «Московская медицинская газета», «Современная медицина», «Архив судебной медицины и общественной гигиены», «Здоровье», «Врач» и другие Медицинские журналы. Большую роль в её формировании сыграли Общество русских врачей в память Н. И. Пирогова, Русское общество охранения народного здравия, общества врачей в Петербурге, Москве , Казани, Харькове и другие Медицинские общества.

Самобытным явлением, единственным в истории примером организованной медицинской помощи сельскому населению в условиях капитализма была Земская медицина с её санитарной организацией. Санитарные врачи Иван Иванович Моллесон, В. О. Португалов, Е. А. Осипов. П. И. Куркин, М. С. Уваров, Николай Иванович Тезяков, Петр Филиппович Кудрявцев, Андрей Иванович Шингарёв и другие провели комплексные санитарно-статистические исследования здоровья крестьян и сельскохозяйственных рабочих. Аналогичные исследования среди фабричного населения были проведены Ф. Ф. Эрисманом, А. В. Погожевым, Евстафием Михайловичем Дементьевым, В. А. Левицким, С. М. Богословским и другими.

Русские общественные врачи собрали материал, свидетельствовавший об антигигиенических условиях жизни трудящихся, высокой заболеваемости и смертности населения. Их работы как серьёзные обвинительные документы против самодержавия и капиталистических отношений были использованы Владимиром Ильичем Лениным .

Развитие медицины в 20 веке

На рубеже 19 и 20 веков под влиянием быстро развивавшихся естественных наук и технического прогресса обогащались и совершенствовались диагностика и лечение. Открытие рентгеновских лучей (немецким физиком Вильгельмом Конрадом Рентгеном , в 1895 - 1897) положило начало рентгенологии. Возможности рентгенодиагностики были расширены применением контрастных веществ, методов послойных рентгеновских снимков (томография), массовых рентгенологических исследований (флюорография), методов, основанных на использовании достижений радиоэлектроники (рентгенотелевидение, рентгенокинематография, рентгеноэлектрокимография, медицинская электрорентгенография и др.).

Открытие естественной радиоактивности и последовавшие за этим исследования в области ядерной физики обусловили развитие радиобиологии, изучающей действие на живые организмы. Русский патофизиолог Е. С. Лондон применил ауторадиографию (1904) и опубликовал первую монографию по радиобиологии (1911). Дальнейшие исследования привели к возникновению радиационной гигиены, применению радиоактивных изотопов в диагностических и лечебных целях, что, в свою очередь, позволило разработать метод меченых атомов; радий и радиоактивные препараты стали успешно применяться в лечебных целях.

В медицине в том время произошла глубокая техническая революция. Огромное значение имело внедрение электроники. Появились принципиально новые методы регистрации функций органов и систем с помощью различных воспринимающих, передающих и записывающих устройств (передача данных о работе и других функциях осуществляется даже на космические расстояния); управляемые устройства в виде искусственной почки, искусственных сердца - лёгких выполняют работу этих органов, например во время хирургических операций; электростимуляция позволяет управлять ритмом больного сердца, вызывать опорожнение мочевого пузыря и т. д. Электронная микроскопия в сочетании с техникой приготовления срезов толщиной до 0,02 мкм сделала возможным увеличение в десятки тысяч раз. Применение электроники сопровождается разработкой количественных методов, позволяющих точно и объективно следить за ходом биологического процесса.

Активно развивается медицинская кибернетика. Особое значение приобрела проблема программирования дифференциальных признаков болезней и привлечения ЭВМ для постановки диагноза. Были созданы автоматические системы регулирования , дыхания и уровня во время операций, активные управляемые и т. д. Выдающиеся успехи физики, химии полимеров, создание новой техники оказывают огромное влияние на медицинскую науку и практику.

Важный результат технического прогресса - возникновение новых отраслей медицины. Так, с развитием авиации в начале 20 века зародилась авиационная М.; её основоположниками были: в России Николай Алексеевич Рынин, во Франции Р. Мулинье, в Германии Е. Кошель. Полёты человека на космических кораблях привели к возникновению космической М.

Значительное влияние на развитие М. оказали химия и физическая химия. Были созданы и нашли применение новые химические и физико-химические методы исследования, продвинулось вперёд изучение химических основ жизненных процессов. В начале 20 века И. К. Банг (Швеция) разработал методы определения различных веществ в малых количествах исследуемого субстрата ( , сыворотка и т. д.), что расширило диагностические возможности.

В результате исследований, направленных на расшифровку химизма патологических состояний, было установлено, что различные заболевания обусловлены нарушениями определенных процессов химических превращений в цепи обмена веществ. После того как Лайнус Карл Полинг и другие установили, что изменение структуры приводит к определенному заболеванию - серповидно-клеточной анемии (1949), получены данные, согласно которым молекулярные основы болезней в ряде случаев проявляются в дефектности молекул аминокислот. Изучение механизмов регуляции обмена веществ на различных уровнях позволило создать новые методы лечения.

Большое влияние на медицину оказала генетика, установившая законы и механизмы наследственности и изменчивости организмов. Изучение наследственных заболеваний привело к возникновению медицинской генетики. Успехи этой научной дисциплины помогли понять взаимодействие факторов наследственности и среды, установить, что условия среды могут способствовать развитию или подавлению наследственного предрасположения к болезни. Были разработаны методы экспресс-диагностики, предупреждения и лечения ряда наследственных заболеваний, организована консультативная помощь населению. Новые перспективы открывают перед М. исследования в области генетики микроорганизмов, в том числе , а также биохимической и молекулярной генетики.

Иммунология 20 века переросла рамки классического учения о невосприимчивости к и постепенно охватила проблемы патологии, генетики, эмбриологии, трансплантации, онкологии и др. Установленный в 1898 - 1899 годах сотрудниками И. И. Мечникова Ж. Борде и Н. Н. Чистовичем факт, что введение чужеродных эритроцитов и сывороточных белков стимулирует выработку антител), положил начало развитию неинфекционной иммунологии. Последующее изучение питотоксических антител стало основой формирования иммунопатологии, изучающей многие заболевания, природа которых связана с расстройствами иммунологических механизмов. Открытие австрийским иммунологом Карлом Ландштейнером законов изогемоагглютинации (1900 - 1901) и чешским врачом Яном Янским (1907) привело к использованию в практической М. и формированию учения о тканевых изоантигенах (см. ). Изучение законов наследования антигенов и других факторов иммунитета породило новую отрасль - иммуногенетику. Изучение эмбриогенеза показало значение явлений иммунитета в тканевой дифференцировке.

В 40-х годах 20 века выяснилось, что процесс отторжения чужеродной ткани при трансплантации объясняется иммунологическими механизмами. В 50-х годах была открыта иммунологическая толерантность: организмы, развивающиеся из эмбрионов, на которые воздействовали определенными антигенами, после рождения теряют способность отвечать на них выработкой антител и активно отторгать их. Это открыло перспективы преодоления иммунологической несовместимости тканей при пересадке тканей и органов. В 50-х годах возникла иммунология опухолей; получили развитие радиационная иммунология, иммуногематология, методы иммунодиагностики, иммунопрофилактики, иммунотерапии.

В тесной связи с изучением иммунологических процессов проходило исследование различных форм извращённой реакции организма на чужеродные субстанции. Открытие французским учёным Ж. Рише явления анафилаксии, французским бактериологом М. Артюсом и русским патологом Гавриилом Петровичем Сахаровым феномена сывороточной анафилаксии и анафилактического шока (1903 - 1905) и др. заложили фундамент учения об . Австрийский педиатр К. Пирке ввёл термин «аллергия» и предложил (1907) аллергическую реакцию на туберкулин как диагностическую пробу при (пирке реакция). Общие закономерности эволюции аллергических реакций раскрыл Николай Николаевич Сиротинин; Михаил Александрович Скворцов и другие описали их морфологию.

В начале 20 века П. Эрлих доказал возможность синтеза по заданному плану препаратов, способных воздействовать на возбудителей заболеваний, и заложил основы химиотерапии. В 1928 году английский микробиолог Александер Флеминг установил, что один из видов плесневого грибка выделяет антибактериальное вещество - пенициллин. В 1939 - 1940 годах патолог Хоуард Уолтер Флори и биохимик Эрнст Борис Чейн разработали методику получения стойкого пенициллина, научились концентрировать его и наладили производство препарата в промышленном масштабе, положив начало новому способу борьбы с микроорганизмами - антибиотикотерапии. В СССР отечественный пенициллин был получен в 1942 году в лаборатории Зинаидой Виссарионовной Ермольевой; в том же году Г. Ф. Гаузе и другими был получен новый антибиотик грамицидин. В 1944 в США З. Ваксман получил стрептомицин. В дальнейшем были выделены многие , обладающие различным спектром антимикробного действия.

Успешно развивалось возникшее в 20 веке учение о (витаминология), было установлено, что все они участвуют в функции различных ферментных систем, расшифрован патогенез многих авитаминозов и найдены пути их предупреждения. Созданное в конце 19 веке французским физиологом и невропатологом Шарлем Эдуаром Броун-Секаром и другими учение о железах внутренней секреции превратилось в самостоятельную медицинскую дисциплину - эндокринологию. Открытие произвело переворот в лечении . Важную роль в развитии эндокринологии и гинекологии сыграло открытие женских половых гормонов. Выделение в 1936 году из надпочечников вещества гормональной природы, которое позднее было названо кортизоном, и синтез (1954) более эффективных преднизолона и др. привели к лечебному применению кортикостероидов. Современная эндокринология уже не ограничивается изучением патологии желёз внутренней секреции; в круг её проблем входят и вопросы гормонотерапии неэндокринных заболеваний, и гормональная регуляция функций в здоровом и больном организме. Развитию эндокринологии и гормонотерапии способствовали работы канадского патолога Ганса Селье, выдвинувшего теорию и общего адаптационного синдрома.

Химиотерапия, гормонотерапия, разработка и применение средств, воздействующих на центральную нервную систему (психофармакология), и другие эффективные лечебные методы изменили лицо клинической М., позволили врачу активно вмешиваться в течение болезни.

Среди выделившихся из клиники внутренних болезней дисциплин особое значение имеет кардиология. Её формированию способствовало клинико-экспериментальное направление исследований (в отечественной медицине - в трудах Д. Д. Плетнёва и других). Стремительное развитие кардиологии во многом обязано работам Дж. Макензи (Великобритания), издавшего классический труд о (1908); А. Вакеза, виднейшего французского кардиолога начала 20 века; Пола Дадли Уайт а (США) и многих других. В начале 20 века В. М. Керниг, Василий Парменович Образцов и Н. Д. Стражеско, а затем Дж. Б. Херрик (США) дали классическое описание клиники . Михаил Владимирович Яновский учением о «периферическом (артериальном) сердце» привлек внимание к значению сосудистого отдела системы . Патофизиолог Семен Сергеевич Халатов и патоморфолог Николай Николаевич Аничков выдвинули «холестериновую теорию» происхождения . Современная кардиология - комплексная дисциплина: её проблемы разрабатывают не только терапевты, но и хирурги, физиологи, биохимики и т. д.

Другой пример формирования новой комплексной дисциплины - гематология, изучающая . Важные этапы её развития связаны с разработкой новых методов исследования, в частности пункции костного мозга (М. И. Аринкин, СССР, 1927), радиоизотопных методов (Л. Лайта, Великобритания, 1952) и других. Применение метода культивирования кроветворной ткани позволило гистологу Александру Александровичу Максимову в 20-х годах развить унитарную теорию кроветворения, согласно которой родоначальник всех форм клеток крови - лимфоцитоподобная клетка; эта теория получает подтверждение в современных морфологических исследованиях так называемых стволовых клеток. Крупные практические достижения этой ветви терапии - метод лечения так называемого злокачественного малокровия сырой печенью (американские терапевт-гематолог Уильям Парри Мёрфи и патофизиолог и терапевт-гематолог Джордж Ричардс Майнот, США, 1926) и витамином B12, а также комбинированная цитостатическая терапия . Гематология принадлежит к числу клинических дисциплин, где наиболее широко применяют методы естественных наук - математические, генетические и другие.

Интенсивное развитие хирургии шло по различным направлениям. Всё возраставшие масштабы войн обусловили формирование военно-полевой хирургии, рост травматизма - развитие травматологии и ортопедии. Всемирное признание получили работы офтальмолога и хирурга Владимира Петровича Филатова в области пластической хирургии. Труды нейрохирурга Харви Уильямса Кушинга, невролога и нейрохирурга Уайлдера Грейвса Пенфилда, Андрея Львовича Поленова, Николая Ниловича Бурденко и других способствовали формированию нейрохирургии. Разработка хирургических методов лечения заболеваний мочеполовой системы (в России Сергея Петровича Фёдоровым и другими) привела к отпочкованию урологии.

В 1923 - 1930 годах советский хирург Александр Васильевич Вишневский разработал метод местного обезболивания новокаином. Продолжали совершенствоваться методы наркоза, который стал более эффективным и безопасным; во 2-й четверти 20 века анестезиология выделилась в самостоятельную специальность. Совершенствованию методов обезболивания способствовали применение препаратов кураре, расслабляющих мышцы, метод гипотермии, разработанный экспериментально, а затем внедрённый в клинику А. Лабори и П. Югенаром (Франция, 1949 - 1954), и др.

Современный наркоз и антибактериальная терапия обеспечили развитие хирургии сердца и лёгких. Советский физиолог Сергей Сергеевич Брюхоненко в 1925 году сконструировал искусственного кровообращения аппарат, который был успешно применен для выведения экспериментальных животных из состояния клинической смерти и при операциях на сердце в эксперименте. Современные модели аппаратов искусственного кровообращения (АИК) используют при операциях на так называемом открытом сердце человека. Успехи кардиохирургии, основы которых были заложены Х. Суттером, Р. Броком (Великобритания), Ч. Бейли, Д. Харкеном (США) во 2-й половине 40-х годов, привели к тому, что традиционно «терапевтическая» группа врожденных и ревматических стала в равной мере относиться к хирургическим болезням. Развитие кардиохирургии в СССР связано с именами хирургов: Александра Николаевича Бакулева, Петра Андреевича Куприянова, Бориса Васильевича Петровского, Александра Александровича Вишневского, Е. Н. Мешалкина и другими. Продолжала развиваться хирургия брюшной полости, крупными представителями которой в СССР были хирурги: Иван Иванович Греков, Сергей Иванович Спасокукоцкий, Алексей Васильевич Мартынов, Сергей Сергеевич Юдин, Андрей Григорьевич Савиных и многие другие.

В начале 20 века начала формироваться онкология, основоположником которой в СССР были Николай Николаевич Петров и Петр Александрович Герцен. В 1903 году французский учёный А. Боррель выдвинул вирусную теорию ; в 1911 году Ф. Роус в США открыл вирус куриных сарком; в 1945 Лев Александрович Зильбер предложил вирусогенетическую теорию, согласно которой опухолевый вирус действует в качестве трансформирующего агента, наследственно изменяющего клетки, - эта теория получает всё большее признание.

Быстрыми темпами развивалась микробиология. В 1921 году микробиолог и гигиенист Альбер Кальмет и Ш. Герен предложили вакцину . В дальнейшем метод специфической профилактики с помощью вакцин и сывороток имел решающее значение в борьбе с , и некоторыми другими . Научной основой борьбы с инфекционными болезнями стали исследования Д. К. Заболотного, Владимира Аароновича Хавкин а и других по эпидемиологии чумы, и , разработка учения о лептоспирозах, риккетсиозах и многое другое. Благодаря открытию в 1892 году фильтрующихся вирусов Дмитрием Иосифовичем Ивановским и последующим исследованиям Мартина Бейеринка и других сформировалась вирусология.

Перед медициной стоят важные задачи изучения природы заболеваний и злокачественных опухолей, путей их профилактики и лечения; разработки проблем молекулярной биологии вирусов, химиотерапии и профилактики , иммунологии и многие другие. Огромное значение приобретают учёт всё возрастающего воздействия факторов внешней среды, научно-технического прогресса на здоровье и трудоспособность человека, предвидение последствий этих воздействий и разработка научно обоснованных мероприятий по оздоровлению внешней среды.

Возрастающее значение медицинской науки и здравоохранения как отрасли народного хозяйства, расширяющейся сферы человеческой деятельности проявляется и в области международных отношений. Пример этого - соглашения СССР с США, Францией и другими странами (1971 - 1973) по вопросам охраны внешней среды, совместно исследований по проблемам кардиологии, онкологии и другим актуальным вопросам. Советские учёные-медики участвовали в деятельности международных научных обществ, ассоциаций, международных медицинских журналов, специализированных организаций ООН, прежде всего . Развитию научного сотрудничества способствовало проведение в СССР международных медицинских конгрессов, конференций и симпозиумов. (Ю. П. Лисицын, Ю. А. Шилинис, А. Д. Адо, П. Е. Заблудовский. Под общей редакцией Б. В. Петровского)

Литература по медицине

  • Общие работы - Постановления КПСС и Советского правительства об охране здоровья народа, [составители П. И. Калью и Н. Н. Морозов], М., 1958;
  • Глязер Г., Основные черты современной медицины, перевод с немецкого, М., 1962;
  • его же, Драматическая медицина, перевод с немецкого, 2 изд., [М.], 1965: Левит М. М., Медицинская периодическая печать России и СССР (1792 - 1962), М., 1963;
  • Лисицын Ю. П., Современные теории медицины, М., 1968: Келановски Т., Пропедевтика медицины, перевод с польского, М., 1968;
  • Петровский Б. В., Здоровье народа - важнейшее достояние социалистического общества, М., 1971;
  • Научные медицинские общества СССР, под редакцией М. В. Волкова, М., 1972.

Литература по истории медицины

  • Лозинский А. А., К истории некоторых важнейших медицинских систем 18 и 19 веков, СПБ, 1905;
  • Оганесян Л. А., История медицины в Армении с древнейших времён до наших дней, 2 изд., ч. 1 - 5, Ер., 1946 - 1947;
  • Коштоянц Х. С., Очерки по истории физиологии в России, М. - Л., 1946;
  • Юдин Т. И., Очерки истории отечественной психиатрии, М., 1951;
  • История медицины, т. 1, под редакцией Б. Д. Петрова, М., 1954;
  • Каневский Л. О., Лотова Е. И., Идельчик Х. И., Основные черты развития медицины в России в период капитализма (1861 - 1917), М., 1956;
  • Глязер Г., Исследователи человеческого тела от Гиппократа до Павлова, перевод с немецкого, М., 1956;
  • Федотов Д. Д., Очерки по истории отечественной психиатрии, т. 1, М., 1957;
  • Лушников А. Г., Клиника внутренних болезней в России первой половины XIX века, М., 1959;
  • его же, Клиника внутренних болезней в России, М., 1962: его же, Клиника внутренних болезней в СССР, М.,1972;
  • Заблудовский П. Е., История отечественной медицины, ч. 1 - 2, М., 1960 - 71;
  • Бородулин Ф. P., История медицины. Избранные лекции, М.,1961;
  • Мультановский М. П., История медицины, М., 1961;
  • Петров Б. Д., Очерки истории отечественной медицины, М., 1962;
  • История медицины СССР, под редакцией Б. Д. Петрова, М., 1964;
  • Основные этапы развития медицины в Грузии, т. 1 - 2, Тб., 1964 - 69;
  • Архангельский Г. В., История неврологии от истоков до XX века, М., 1965 (лит.);
  • Очерки истории русской общественной медицины, под редакцией П. И. Калью, М., 1965;
  • Diepgen P., Geschichte der Medizin. Diehistorische Entwicklung der Heilkunde und des ?rztllchen Lebens, Bd 1 - 2, В., 1949 - 55;
  • Sigerist Н. Е., A history of medicine, v. 1, N. Y.,1955;
  • Major R. H., A history of medicine, v. 1 - 2, Oxf., 1955;
  • Aschoff L., Diepgen P., Goerke Н., Kurze ?bersichtstabelle zur Geschichte der Medizin, 7. Aufl., B. - , 1960;
  • Garrison F. Н., An introduction to the history of medicine…, 4 ed., Phil. - L., ;
  • Geschichte der Medizin, B., 1968;
  • Talbott J. Н., A biographical history of medicine. Excerpts and essays on the men and their work, N. Y. - L., 1970;
  • Bari?ty M., Coury Ch., Histoirede la m?decine, P., 1971.

Словари по медицине

  • Змеев Л. Ф., Русские врачи писатели, в. 1 - 3, СПБ, 1886 - 1889;
  • Лахтин М. Ю., Краткий биографический словарь знаменитых врачей всех времен, СПБ, 1902;
  • Медицинский факультет Харьковского университета за первые 100 лет его существования. (1805 - 1905), Хар., 1905 - 1906;
  • Биографический словарь профессоров 1-го Ленинградского, бывшего Женского, медицинского института им. акад. И. П. Павлова за 50 лет. 1897 - 1947, [Л.], 1947;
  • Англо-русский медицинский словарь. 2 изд., М., 1969;
  • Арнаудов Г. Д., Медицинская терминология на пяти языках: Latinum, Русский, English, Fran?ais, Deutsch, перевод с болгарского, 3 изд., София, 1969;
  • Медицинский словарь. Английский. Русский. Французский. Немецкий. Латинский. Польский, под редакцией Б. Злотницкого, Варшава, 1971;
  • Pagel J., Biographisches Lexikon hervorragenden ?rzte des 19. Jahrhunderts, W. - B., 1900;
  • Biographisches Lexikon der hervorragender ?rzte aller Zeiten und V?lker, 2. Aufl., Bd 1 - 5, В. - W., 1929 - 1934;
  • Fischer I., Biographisches Lexikon der hervorragenden ?rzte der letzten f?nfzig Jahre, Bd 1 - 2, В. - W., 1932 - 1933;
  • Binet L., Medecins, biologistes et chirurgiens, P., ;
  • Sigerist H. E., The great doctors: a biographical history of medicine, L., 1971.

Библиография

  • Российский Д. М., Библиографический указатель русской литературы по истории медицины с 1789 г. по 1928 г., М., 1928;
  • его же, История всеобщей и отечественной медицины и здравоохранения. Библиография. (996 - 1954 гг.), М.,1956;
  • KeIIy E. С., Encyclopedia of medical sources, Bait., 1948;
  • Index zur Geschichte der Medizin,… Bd 1 - 2, В. - M?nch., 1953 - 1966;
  • Garrison F., Morton L., A medical bibliography, 3 ed., ;
  • Pauly A., Bibliographic des sciences m?dicales, ;
  • Cunningham E. R., A bibliography of the reference works and histories in medicine and the allied sciences, в книге: Handbook of medical library practice, Chi., 1956;
  • Bishop W., Bibliography of international congresses of medical sciences. Oxf., ;
  • Thornton J. L., A select bibliography of medical biography, 2 ed., L., 1970.

Найти ещё что-нибудь интересное: