Какие вещества не диссоциируют на ионы. Электролитическая диссоциация ионное произведение воды. Классическая теория электролитической диссоциации

Все вещества по способности в растворе или в расплавленном состоянии проводить электрический ток можно подразделить на две группы: электролиты и неэлектролиты.

Электролитами называются вещества, растворы или расплавы которых проводят электрический ток. К электролитам относятся кислоты, основания и соли.

Неэлектролитами называются вещества, растворы или расплавы которых электрический ток не проводят. Например, многие органические вещества.

Способность электролитов (проводников II рода) проводить электрический ток принципиально отличается от электропроводности металлов (проводников I рода): электропроводность металлов обусловлена движением электронов, а электропроводность электролитов связана с движением ионов.

Было обнаружено, что в растворах кислот, оснований и солей экспериментально найденные значения p, tкрист., tкип., pосм, больше теоретически рассчитанных для того же раствора по его молярной концентрации в i раз (i - изотонический коэффициент). Причем число частиц в растворе NaCl увеличилось почти в 2 раза, а в растворе СаCl2 - в 3 раза.

Для объяснения особенностей поведения электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория, получившая название теории электролитической диссоциации . Сущность теории состоит в следующем:

  • 1. Электролиты при растворении в воде распадаются (диссоциируют) на заряженные частицы (ионы) - положительно заряженные катионы (Na+, K+, Ca2+, H+) и отрицательно заряженные анионы (Cl-, SO42-, CO32-, OH-). Свойства ионов совершенно иные, чем у образовавших их атомов. Распад нейтрального вещества на ионы в результате химического взаимодействия с растворителем называют электролитической диссоциацией.
  • 2. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы - к положительно заряженному электроду (аноду).
  • 3. Диссоциация - процесс обратимый и равновесный. Это означает, что параллельно с распадом молекул на ионы (диссоциация), идет процесс соединения ионов в молекулы (ассоциация): КА К+ + А-.
  • 4. В растворе ионы находятся в гидратированном состоянии.

Для количественной оценки электролитической диссоциации используется понятие степени электролитической диссоциации () - отношение числа молекул, распавшихся на ионы, к общему числу растворенных молекул. Степень диссоциации определяется опытным путем и выражается в долях или процентах. Степень электролитической диссоциации зависит от природы растворителя и растворяемого вещества, температуры и концентрации раствора:

  • 1. Чем более полярен растворитель, тем выше степень диссоциации в нем электролита.
  • 2. Диссоциации подвергаются вещества с ионной и ковалентной полярной связью.
  • 3. Повышение температуры, увеличивает диссоциацию слабых электролитов.
  • 4. При уменьшении концентрации электролита (при разбавлении) степень диссоциации увеличивается.

В зависимости от величины степени диссоциация условно электролиты (при концентрации их растворов 0,1 М) делят на:

По виду образующихся при диссоциации ионов все электролиты можно разделить на кислоты, основания, соли.

Кислоты - электролиты, диссоциирующие с образованием только катионов H+ и кислотного остатка (Cl- - хлорид, NO3- - нитрат, SO42- - сульфат, HCO3 гидрокарбонат, CO32 карбонат). Например: НСl Н++Сl-, H2SO4 2Н++SO42- .

Наличие в растворах кислот иона водорода, точнее, гидратированного иона Н3O+, обусловливает общие свойства кислот (кислый вкус, действие на индикаторы, взаимодействие со щелочами, взаимодействие с металлами с выделением водорода и пр.).

В многоосновных кислотах диссоциация происходит ступенчато, причем каждая ступень характеризуется своей величиной степени диссоциации. Так, ортофосфорная кислота диссоциирует по трем ступеням:

I ступень

H3РO4 Н+ + H2РO4-

II ступень

H2РO4- Н+ + HРO42-

III ступень

HРO42- Н+ + РO43-

Причем 3<2<1, т.е. распад электролита на ионы протекает, в основном, по первой ступени и в растворе ортофосфорной кислоты будут находиться преимущественно ионы Н+ и H2РO4-. Причины этого в том, что ионы водорода значительно сильнее притягиваются к трехзарядному иону РO43- и двухзарядному иону HРO42-, чем к однозарядному H2РO4-. Кроме того, на 2-ой и 3-ей ступенях имеет место смещение равновесия в сторону исходной формы по принципу Ле-Шателье за счет накапливающихся ионов водорода.

Основания - электролиты, диссоциирующие с образованием в качестве анионов только гидроксид-ионы (OH-). После отрыва OH- остаются катионы: Na+, Cа2+, NH4+. Например: NaOH Na+ + ОН-, Са(ОН)2 Са2+ + 2 OН-.

Общие свойства оснований (мыльность на ощупь, действие на индикатор, взаимодействие с кислотами и пр.) определяются наличием в растворах оснований гидроксо-группы ОН-.

Для многокислотных оснований характерна ступенчатая диссоциация:

I ступень

Ва(ОН)2 Ва(ОН)+ + OН-

II ступень

Ва(ОН)+ Ва2+ + OН-

Диссоциация амфотерных гидроксидов протекает как по типу основания, так и по типу кислоты. Так, диссоциация гидроксида цинка может протекать по следующим направлениям (при этом равновесие сдвигается в зависимости от среды по принципу Ле-Шателье):

Соли - это электролиты, диссоциирующие на катионы металла (или заменяющих его групп) и анионы кислотного остатка.

Средние соли диссоциируют полностью: CuSO4 Cu2+ + SO42-. В отличие от средних солей, кислые и основные соли диссоциируют ступенчато:

I ступень

NaНСО3 Na+ + НСО3-

Сu(ОН)Cl Сu(ОН)+ + Cl-

II ступень

НСО3- Н+ + СО32-

Сu(ОН)+ Сu2+ + OН-,

причем степень диссоциации солей по второй ступени очень мала.

Реакции обмена в растворах электролитов - это реакции между ионами. Необходимым условием протекания реакций обмена в растворах электролитов является образование слабодиссоциирующих соединений или соединений, выделяющихся из раствора в виде осадка или газа.

При написании уравнений реакций в ионно-молекулярном виде слабодиссоциирующие, газообразные и труднорастворимые соединения записывают в виде молекул , а растворимые сильные электролиты - в виде ионов. При написании ионных уравнений следует обязательно руководствоваться таблицей растворимости кислот, оснований и солей в воде (Приложение А).

Рассмотрим методику написания ионных уравнений на примерах.

Пример 1. Напишите в ионно-молекулярной форме уравнение реакции:

ВаСl2 + K2SО4 = ВаSО4 + 2KСl

Решение: Соли являются сильными электролитами и практически полностью диссоциируют на ионы. Так как ВаSО4 - практически нерастворимое соединение (см. таблицу приложения А), основная часть сульфата бария будет находиться в недиссоциированном виде, поэтому это вещество запишем в виде молекул, а остальные соли, являющиеся растворимыми, в виде ионов:

Ва2+ + 2Сl- + 2K+ + SО42- = ВаSО4 + 2K+ + 2Сl-

Как видно из полученного полного ионно-молекулярного уравнения, ионы K+ и Сl- не взаимодействуют, поэтому, исключив их, получим краткое ионно-молекулярное уравнение:

Ва2+ + SО42- = ВаSО4 ,

Стрелка показывает, что образующееся вещество выпадает в осадок.

Ионными уравнениями могут быть изображены любые реакции, протекающие в растворах между электролитами. Причем суть любой химической реакции отображает именно краткое ионно-молекулярное уравнение. На основании ионно-молекулярного уравнения можно легко написать молекулярное.

Пример 2. Подберите молекулярное уравнение к следующему ионно-молекулярному уравнению: 2Н+ + S2- = Н2S.

Решение: Ионы водорода образуются при диссоциации любой сильной кислоты, например НСl. К ионам водорода в кратком ионном уравнении необходимо добавить два иона хлора. К сульфид-ионам следует добавить катионы (например, 2K+), образующие растворимый, хорошо диссоциирующий электролит. Затем такие же ионы нужно написать в правой части. Тогда полное ионно-молекулярное и молекулярное уравнения будут иметь вид:

  • 2Н+ + 2Сl- + 2K+ + S2- = Н2S + 2K+ + 2Сl-
  • 2 НСl + K2S = Н2S + 2 KСl-

Все вещества делятся на 2 большие группы: электролиты инеэлектролиты .

Электролитами называются вещества (исключая металлы), растворы или расплавы которых проводят электрический ток. К электролитам относятся соединения, образованные ионными или ковалентными полярными связями. Это сложные вещества: соли, основания, кислоты, оксиды металлов (проводят электрический ток только в расплавах).

Неэлектролитами называются вещества, растворы или расплавы которых электрический ток не проводят. К ним относятся простые и сложные вещества, образованные малополярными или неполярными ковалентными связями.

Свойства растворов и расплавов электролитов впервые объяснил в конце XIXвека шведский учёный Сванте Аррениус. Им была создана специальнаятеория электролитической диссоциации , основные положения которой, доработанные и развитые другими учёными, в настоящее время формулируются следующим образом.

1. Молекулы (или формульные единицы) электролитов в растворах или расплавах распадаются на положительно и отрицательно заряженные ионы. Этот процесс называется электролитической диссоциацией. Общая сумма зарядов положительных ионов равна сумме зарядов отрицательных ионов, поэтому растворы или расплавы электролитов в целом остаются электронейтральными. Ионы могут быть какпростые , состоящие только из одного атома (Na + ,Cu 2+ ,Cl – ,S 2-), так исложные , состоящие из атомов нескольких элементов (SO 4 2– ,PO 4 3– ,NH 4 + , –).

Простые ионы по своим физическим, химическим и физиологическим свойствам существенно отличаются от нейтральных атомов, из которых они образовались. В первую очередь, ионы являются гораздо более устойчивыми частицами, чем нейтральные атомы, и могут существовать в растворах или расплавах неограничено долгое время, не вступая в необратимое взаимодействие с окружающей средой.

Такое различие в свойствах атомов и ионов одного и того же элемента объясняется разным электронным строением этих частиц.

Так, простые ионы s- иp-элементов находятся в более устойчивом состоянии, чем нейтральные атомы, потому что имеют завершённую электронную конфигурацию внешнего слоя, например:

Распад электролитов на ионы в расплавах осуществляется за счёт действия высоких температур, а в растворах за счёт действия молекул растворителя.

Особенностью ионных соединений является то, что в узлах их кристаллической решётки имеются уже готовые ионы и в процессе таких веществ растворения диполям растворителя (воды) остаётся только разрушить эту ионную решётку (рис. 18).

Вещества, образованные полярными ковалентными связями, переходят в раствор в виде отдельных молекул, которые, как и молекулы Н 2 О, представляют собой диполи, например:

+ –

В этом случае диполи Н 2 О, ориентируясь соответствующим образом вокруг растворенной молекулы электролита, вызывают в ней дальнейшую поляризацию ковалентной связи, а затем и её окончательный гетеролитический разрыв (рис. 29).

H–ClH + +Cl

Рис. 29. Схема электролитической диссоциации в растворе полярной молекулыHCl

Процесс электролитической диссоциации протекает одновременно с процессом растворения веществ, и поэтому в растворах все ионы находятся в гидратированном состоянии (окружены оболочками из молекул Н 2 О).

Однако для простоты в уравнениях химических реакций ионы изображаются без окружающих их гидратных оболочек: H + ,NO 3 – ,K + и т.д.

2. Ионы электролитов в растворе или расплаве за счёт теплового движения хаотически перемещаются по всем направлениям. Но если в раствор или расплав опустить электроды и пропустить электрический ток, то положительно заряженные ионы электролита начинают двигаться к отрицательно заряженному электроду – катоду (поэтому они иначе называются катионами ), а отрицательно заряженные ионы – к положительно заряженному электроду – аноду (поэтому они иначе называются анионами ).

Таким образом, электролиты являются проводниками второго рода. Они переносят электрический заряд за счёт направленного движения ионов. Металлы же являются проводниками первого рода, т.к. проводят электрический ток за счёт направленного движения электронов.

3. Процесс электролитической диссоциации обратим. Наряду с распадом молекул на ионы всегда протекает обратный процесс – соединение ионов в молекулы или ассоциация. Поэтому в уравнениях реакций электролитической диссоциации веществ вместо знака равенства «=» ставят знак обратимости «», например:

Вещества-электролиты при растворении в воде распадаются на заряженные частицы — ионы. Обратное явление — моляризация, или ассоциация. Образование ионов объясняет теория электролитической диссоциации (Аррениус, 1887). На механизм распада химических соединений при расплавлении и растворении влияют особенности типов химических связей, строение и характер растворителя.

Электролиты и непроводники

В растворах и расплавах происходит разрушение кристаллических решеток и молекул — электролитическая диссоциация (ЭД). Распад веществ сопровождается образованием ионов, появлением такого свойства, как электропроводность. Не каждое соединение способно диссоциировать, а только вещества, которые изначально состоят из ионов либо сильно полярных частиц. Присутствием свободных ионов объясняется свойство электролитов проводить ток. Обладают такой способностью основания, соли, многие неорганические и некоторые органические кислоты. Непроводники состоят из малополярных или неполяризованных молекул. Они не распадаются на ионы, являясь неэлектролитами (многие органические соединения). Переносчики зарядов — положительные и отрицательные ионы (катионы и анионы).

Роль С. Аррениуса и других химиков в изучении диссоциации

Теория электролитической диссоциации обоснована в 1887 году ученым из Швеции С. Аррениусом. Но первые обширные исследования свойств растворов были проведены еще русским ученым М. Ломоносовым. Внесли вклад в изучение заряженных частиц, возникающих при растворении веществ, Т. Гротгус и М. Фарадей, Р. Ленц. Аррениус доказал, что электролитами являются многие неорганические и некоторые органические соединения. Шведский ученый объяснил электропроводность растворов распадом вещества на ионы. Теория электролитической диссоциации Аррениуса не придавала значения непосредственному участию молекул воды в этом процессе. Русские ученые Менделеев, Каблуков, Коновалов и другие считали, что происходит сольватация — взаимодействие растворителя и растворенного вещества. Когда идет речь о водных системах, то применяется название «гидратация». Это сложный физико-химический процесс, о чем свидетельствует образование гидратов, тепловые явления, изменение цвета вещества и появление осадка.

Основные положения теории электролитической диссоциации (ТЭД)

Многие ученые работали над уточнением теории С. Аррениуса. Потребовалось ее усовершенствование с учетом современных данных о строении атома, химической связи. Сформулированы основные положения ТЭД, отличающиеся от классических тезисов конца XIX века:

Происходящие явления необходимо учитывать при составлении уравнений: применить специальный знак обратимого процесса, подсчитать отрицательные и положительные заряды: они в сумме должны совпадать.

Механизм ЭД ионных веществ

Современная теория электролитической диссоциации учитывает строение веществ-электролитов и растворителей. При растворении связи между разноименно заряженными частицами в ионных кристаллах разрушаются под воздействием полярных молекул воды. Они буквально «вытягивают» ионы из общей массы в раствор. Распад сопровождается образованием вокруг ионов сольватной (в воде — гидратной) оболочки. Кроме воды, повышенной диэлектрической проницаемостью обладают кетоны, низшие спирты. При диссоциации хлорида натрия на ионы Na + и Cl - регистрируется начальная стадия, которая сопровождается ориентацией диполей воды относительно поверхностных ионов в кристалле. На заключительном этапе гидратированные ионы освобождаются и диффундируют в жидкость.

Механизм ЭД соединений с ковалентной сильнополярной связью

Молекулы растворителя влияют на элементы кристаллического строения неионных веществ. Например, воздействие диполей воды на хлороводородную кислоту приводит к изменению типа связи в молекуле с ковалентной полярной на ионную. Вещество диссоциирует, в раствор поступают гидратированные ионы водорода и хлора. Этот пример доказывает важность тех процессов, которые возникают между частицами растворителя и растворенного соединения. Именно это взаимодействие приводит к образованию ионов электролита.

Теория электролитической диссоциации и основные классы неорганических соединений

В свете основных положений ТЭД кислотой можно назвать электролит, при распаде которого из положительных ионов можно обнаружить только протон Н + . Диссоциация основания сопровождается образованием или освобождением из кристаллической решетки только аниона ОН - и катиона металла. Нормальная соль при растворении дает положительный ион металла и отрицательный — остатка кислоты. Основная соль отличается наличием двух видов анионов: ОН-группы и кислотного остатка. В кислой соли из катионов присутствуют только водород и металл.

Сила электролитов

Для характеристики состояния вещества в растворе используется физическая величина — степень диссоциации (α). Находят ее значение из отношения количества распавшихся молекул к общему их числу в растворе. Глубину диссоциации определяют разные условия. Важны диэлектрические показатели растворителя, структура растворенного соединения. Обычно степень диссоциации понижается с ростом концентрации и увеличивается при повышении температуры. Зачастую степень диссоциации конкретного вещества выражают в долях от единицы.

Классификация электролитов

Теория электролитической диссоциации в конце XIX века не содержала положения о взаимодействии ионов в растворе. Несущественным казалось Аррениусу влияние молекул воды на распределение катионов и анионов. Представления Аррениуса о сильных и слабых электролитах были формальными. Исходя из классических положений, можно получить значение α = 0,75-0,95 для сильных электролитов. В экспериментах доказана необратимость их диссоциации (α →1). Практически полностью распадаются на ионы растворимые соли, серная и соляная кислоты, щелочи. Частично диссоциируют сернистая, азотистая, плавиковая, ортофосфорная кислоты. Слабыми электролитами считаются кремниевая, уксусная, сероводородная и угольная кислоты, гидроксид аммония, нерастворимые основания. Воду также относят к слабым электролитам. Диссоциирует небольшая часть молекул Н 2 О, одновременно происходит моляризация ионов.

Давно известно, что некоторые растворы проводят электрический ток (такие растворы получили название электролитов ), а некоторые - не проводят (неэлектролиты ).

Кроме электропроводности электролиты и неэлектролиты имеют много других отличий. При одинаковой молярной концентрации электролиты (по сравнению с неэлектролитами) обладают:

  • более высокой температурой кипения;
  • более низкой температурой замерзания;
  • более высоким осмотическим давлением;
  • более низким давлением пара растворителя.

Такое большое различие в свойствах растворов ученые объясняют тем фактом, что в электролитах при растворении образуется гораздо большее кол-во частиц, которые еще и обладают зарядом, хотя, в общем, раствор электролита нейтрален.

Впервые теорию электролитической диссоциации (разделения) сформулировал в 1887 г. шведский ученый С. Аррениус, ее основные положения заключались в следующем:

  • электролиты, растворяясь в воде, диссоциируют (распадаются) на положительно (катионы) и отрицательно (анионы) заряженные ионы;
  • под воздействием внешнего электрического поля катионы в растворе электролита начнут двигаться к катоду (отрицательному электроду), анионы - к аноду (положительному электроду);
  • электролитическая диссоциация является обратимым процессом - параллельно с распадом молекул на ионы идет обратный процесс ассоциации (ионы соединяются в молекулы), в результате чего в растворе устанавливается динамическое равновесие.

Через несколько лет, в 1891 г., русский ученый И. Каблуков внес существенные уточнения в теорию Аррениуса, введя понятие сольватации катионов и анионов (формирование химических связей между растворителем и растворяемым веществом).

Ионами называют атомы (группы атомов), которые имеют заряд (положительный - анионы или отрицательный - катионы ).

Ионы бывают:

  • простые - Na + , Mg 2+ , S 2- , Cl -
  • сложные - NO 3 - , NH 4 + , SO 4 2- , PO 4 3-

Механизм электролитической диссоциации

Электролиты бывают двух видов: раствором с ионной связью и раствором с ковалентной связью.

Растворители, в которых протекает процесс диссоциации, обязательно состоят из полярных молекул.

Механизм диссоциации электролитов с ионной и ковалентной связью различен.

Хлорид натрия является веществом с ионной связью , в узлах кристаллической решетки NaCl находятся ионы натрия и хлора.

Рис. 1. Кристаллическая решетка хлорида натрия.

При погружении поваренной соли в воду на первой стадии растворения (диссоциации NaCl) полярные молекулы воды под действием электростатического притяжения приклеиваются своей отрицательной стороной к катионам натрия (Na +), а положительной стороной к анионам хлора (Cl -):


Рис. 2 Притяжение полярных молекул воды к ионам NaCl.

По мере склеивания молекул воды с ионами натрия и хлора происходит ослабление ионных связей Na + с Cl - :

Кристаллическая решетка постепенно разрушается, в результате чего, освободившиеся ионы переходят в раствор, в котором они тут же связываются с молекулами воды - такие ионы называются гидратированными .


Рис. 3 Ослабление ионных связей хлорида натрия.

Ионные связи хлорида натрия разрываются и гидратированные ионы переходят в раствор:


Рис. 4 Переход гидратированных ионов натрия и хлора в раствор.

В водном растворе диссоциация ионных соединений всегда протекает полностью .

Диссоциация хлороводорода

Хлороводород является веществом с ковалентной полярной связью .

Под воздействием молекул воды ковалентные связи поляризуются еще больше и становятся связями ионными, после чего происходит процесс, описанный выше:


Рис. 5 Диссоциация полярной молекулы HCl.

Из вышесказанного можно сделать вывод, что электролитическая диссоциация возможна в полярных растворителях (вода, этиловый спирт). При диссоциации в первую очередь разрываются наиболее полярные связи (самая большая разность в электроотрицательности атомов, составляющих связь; см. Понятие электроотрицательности).

Растворитель выполняет не только роль разделения катионов и анионов растворяемого вещества, но также замедляет обратный процесс ассоциации ионов в исходную молекулу, поскольку сольватированные (гидратированные) ионы окружены "прилипшими" молекулами растворителя, что мешает сближению (под воздействием кулоновского электростатического притяжения) и воссоединению в молекулу катионов и анионов. Кол-во молекул растворителя, находящихся в гидратной оболочке ионов, зависит от природы ионов, концентрации и температуры раствора.

Одно из главных отличий диссоциации электролитов с полярной связью от диссоциации электролитов с ионной связью заключается в том, что такая диссоциация может быть частичной - это зависит от полярности связей в молекулах электролитов.

Уравнения электролитических диссоциаций записываются следующим образом:

NaCl ↔ Na + + Cl - HCl ↔ H + + Cl -

Электролитическая диссоциация протекает за счет энергии, выделяемой в процессе разрушения кристаллической решетки растворяемого вещества во время взаимодейтсвия молекул растворителя с веществом. Следует сказать, что диссоциация может протекать и без растворителя, например, при высокой температуре, когда образуется расплав вещества (энергия для разрушения кристаллической решетки берется из внешнего источника высокой температуры).

ИТОГ : Электролитическая диссоциация - это процесс распада вещества (электролита) на ионы (в растворах под воздействием полярных молекул растворителя; в расплавах - под воздействием высокой температуры).

Свойства ионов

Атомы элементов и их ионы - это далеко не "родственники". По своим физическим и химическим свойствам ионы сильно отличаются от нейтральных атомов, из которых они образовались.

Например атомы натрия активно взаимодейтсвуют с водой, а анионы натрия не взаимодействуют с водой. Хлор в свободном состоянии является ядовитым газом желто-зеленого цвета, а хлорид-ионы не ядовиты, не имеют запаха и цвета.p>

Такие сильные различия между атомами и их ионами объясняются разным электронным строением.

При наличии в растворе нескольких электролитов они диссоциируют в сторону образования: 1) осадков; 2) газов; 3) слабых электролитов.

  • пример диссоциации с образованием осадков: BaCl 2 +Na 2 SO 4 = BaSO 4 ↓+2NaCl Ba 2+ +2Cl - +2Na + +SO 4 2- =BaSO 4 ↓+2Na + +2Cl - 2Cl - и 2Na + можно сократить Сокращенное ионное уравнение: Ba 2+ +SO 4 2- =BaSO 4 ↓
  • пример диссоциации с образованием газов: CaCO 3 +2HCl = CaCl 2 +CO 2 +H 2 O Сокращенное ионное уравнение: CaCO 3 +2H + =Ca 2+ +CO 2 +H 2 O
  • пример диссоциации с образованием слабых электролитов: HCl+NaOH = NaCl+H 2 O Сокращенное ионное уравнение: H + +OH - = H 2 O

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам . Ими являются, например, газ азот N 2 , жидкость хлороформ CHCl 3 , твердое вещество сахароза C 12 H 22 O 11 , которые в водном растворе существуют в виде гидратов этих молекул.
известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул МА nH 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + * nH 2 O и анионы А * nH 2 O:
МА * nH 2 O → М + * nH 2 O + А — * nH 2 O
Такие вещества относятся к электролитам.
Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус 1887).
Электролитическая диссоциация ионных кристаллических веществ (М +)(А —) в воде является необратимой реакцией:
(М +)(А —) (т) →(М +)(А —) (р) =(М +) (р) + (А —) (р)
Такие вещества относятся к сильным электролитам , ими являются многие основания и соли, например:

NaOH = Na + + OH — K 2 SO 4 = 2K + + SO 4 —
Ba(OH) 2 = Ba 2+ + 2OH — Na 2 = 2Na + + S 2-
Электролитическая диссоциация вещества МА, состоящих из полярных ковалентных молекул, является обратимой реакцией:
(М-А) (г,ж,т) → (М-А) (р) ↔ М + (р) А — (р)
такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:
а) HNO 2 ↔ H + + NO 2-
б) CH 3 COOH ↔ H + + CH 3 COO —
в) H 2 CO 3 ↔ H + + HCO 3 — (первая ступень)
HCO 3 — ↔ H + + CO 3 2- (вторая ступень)
г) NH 3 * H 2 O ↔ NH 4 + OH —
В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.
Качественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается ɑ 1 , всегда ɑ › 0.
Для сильных электролитов ɑ = 1 по определению (диссоциация таких электролитов полная).
Для слабых электролитов степень диссоциации – отношение малярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):

Степень диссоциации – это доля единицы от 100%. Для слабых электролитов ɑ ˂ С 1 (100%). Для слабых кислот H n A степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:
H 3 PO 4 ↔ H + + H 2 PO 4 — = 23,5%
H 2 PO 4 — ↔ H + + HPO 4 2- = 3*10 -4 %
HPO 4 2- ↔ H + + PO 4 3- = 2*10 -9 %
Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т.е. при разбавлении раствора) при нагревании .
В разбавленных растворах сильных кислот H n A их гидротионы H n -1 A не существуют, например:
H 2 SO 4 = H + + (1 → 1)
= H + + SO 4 -2 (1 → 1)
В итоге: H 2 SO 4(разб.) = 2H + + SO 4 -2
в концентрированных растворах содержание гидроанионов (и даже исходных молекул) становятся заметными:
H 2 SO 4 — (конц.) ↔ H + + HSO 4 — (1 ˂ 1)
HSO 4 — ↔ H + + SO 4 2- (2 ˂ 1 ˂ 1)
(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения 1 и 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.
Кислоты — это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных анионов не образуют:
* буквой обозначают степень протекания любых обратимых реакций, в том числе и степень гидролиза.
H 2 SO 4 = 2H + = SO 4 2- , HF ↔ H + + F —
Распространенные сильные кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
HCl, HBr, HI, HNCS
В разбавленном водном растворе (условно до 10%-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот H n A в список вошли их гидротионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.
Распространенные слабые кислоты :
Кислородсодержащие кислоты

Бескислородные кислоты
Основание – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:
KOH = K + + OH — , Ca(OH) 2 = Ca 2+ + 2OH —
Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.
К сильным основаниям (щелочам ) относятся NaOH, KOH, Ba(OH) 2 некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 H 2 O.
Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме H + , и любые анионы, кроме OH :
Cu(NO 3) 2 = Cu 2+ + 2NO 3 —
Al 2 (SO 4) 3 =2Al 3+ + 3SO 4 2-
Na(CH 3 COO) = Na + + CH 3 COO —
BaCl 2 = Ba 2+ + 2Cl
K 2 S = 2K + + S 2-
Mg(CN) 2 = Mg 2+ + 2CN —
речь идет не только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.
Аналогично диссоциируют двойные соли:
KAl(SO 4) 2 = K + + Al 3+ + 2SO 4 2-
Fe(NH 4) 2 (SO 4) 2 = Fe 2+ + 2NH 4 + 2SO 4 2-
Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:
KHSO 4 = K + + HSO 4 —
KHCr 2 O 7 = K + + HCr 2 O 7 —
KH 2 PO 4 = K + + H 2 PO 4 —
NaHCO 3 = Na + + HCO 3 —
Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:
а) если гидроанион принадлежит сильной кислоте, то он и сам диссоциирует также полностью:
HSO 4 — = H + + HSO 4 2- , HCr 2 O 7 — = H + + Cr 2 O 7 2-
и полное уравнение реакции диссоциации запишется в виде:
KHSO 4 = K + + H + + SO 4 2-
KHCr 2 O 7 = K + + H + Cr 2 O 7 2-
(растворы этих солей обязательно будут кислыми, как и растворы соответствующих кислот);
б) если гидротион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:
H 2 PO 4 — ↔ H + + HPO 4 2- (1)
HCO 3 — ↔ H + CO 3 2- (1)

Либо взаимодействие с водой (называемым обратимым гидролизом):
H 2 PO 4 — + H 2 O ↔ H 3 PO 4 + OH — (2)
HCO 3 — + H 2 O ↔ H 2 CO 3 + OH — (2)
При 1 2 преобладает диссоциация (и раствор будет кислым), а при 1 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 — , H 2 PO 4 — , H 2 AsO 4 — и HSeO 3 , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между 1 и 2 изучаются только в высшей школе)

Основные соли MgCl(OH), CuCO 3 (OH) 2 и другие в своембольшинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.