Физические методы обеззараживания воды, гигиеническая оценка. Методы обеззараживания питьевой воды Новые методы обеззараживания питьевой воды

" статьёй . Где в продолжении прошлой статьи, где затрагивалось реагентное обеззараживание воды , более подробно остановимся на методах физических.

Физические методы обеззараживания воды очень и разнообразны. И начнём мы с, наверное, самого известного и самого доступного метода обеззараживания воды — кипячения. Кипячение использовали десятки тысяч лет, и даже сейчас он также не потерял своей актуальности. Так, если вы в походе на реке, и у вас с собой нет воды, вы просто можете прокипятить воду из реки некоторое время, и большинству бактерий придёт конец.

У этого метода есть недостаток: сложно определить, когда пора заканчивать кипятить воду. То есть, когда уже всё — умерли все бактерии. Так, большинство бактерий погибает при температуре выше 50 градусов цельсия. Из-за того, что сворачиваются белки, из которых они устроены. С другой стороны, существуют стойкие к кипячению бактерии.

Плюс, что немаловажно, при кипячении не гибнут споры бактерий .

Споры бактерий — это бактерии, которые решили переждать очень неблагоприятные условия. Для этого они создали себе очень толстую и очень прочную оболочку для защиты. Питаться они, естественно, через неё не могут, так что в таком состоянии бактерии в спячке. Однако, стоит бактерии попасть в благоприятную среду, как она сбрасывает защитную оболочку и снова начинает развиваться.

Толстые защитные оболочки спор бактерий легко выдерживают длительное кипячение, воздействие большинства антибактериальных реагентов и даже космический холод. Так, в таком "спористом" состоянии на землю вместе со звёздной пылью регулярно попадают внеземные формы жизни — те самые бактерии в форме спор. Существует гипотеза, что именно таким образом на Земле появилась жизнь.

Другой физический метод обеззараживания воды — ультрафиолетовое излучение . Ультрафиолетовое излучение является компонентом солнечного излучения. Поэтому в Древней Индии люди обеззараживали воду, выставляя её в плоских широких чанах на солнце. Бактерии под воздействием ультрафиолетового излучения погибали.

Приборы для ультрафиолетового обеззараживания воды — специальные ультрафиолетовые лампы . Они представляют собой цилиндры, внутри которых протекает вода, и где расположена ультрафиолетовая лампа. В зависимости от скорости потока подбирается соответствующая лампа.

Ультрафиолетовая лампа — это сменный элемент; она меняется через определённое количество часов. Время её работы показывает специальный блок, который должен идти в комплекте с ультрафиолетовой лампой. Для наиболее эффективной работы ультрафиолетового стерилизатора необходимо выполнение ряда условий, которые касаются состава воды.

Так, вода должна быть полностью прозрачна . Если этого не происходит, то эффективность обеззараживания снижается, так как бактерии прячутся от излучения в тени, которая отбрасывается посторонними частицами. И, соответственно, не гибнут. То есть, должна быть установлена минимум грубая механическая очистка воды. А лучше тонкая фильтрация не менее 5 микрометров.

Для ультрафиолетовой лампы критична жёсткая вода . Если жёсткость превышает определённое значение, то ультрафиолетовое излучение будет вызывать активное образование накипи на лампе, что приведёт к снижению эффективности обеззараживания. Потому что лампа покрывается налётом, и излучение не проходит. Значит, необходимо предварительное .

Также в воде не должно быть железа и марганца (так что часто наряду с умягчением необходимы обезжелезивание и деманганация воды). Причины те же, что и для солей жёсткости — железо и марганец образуют помехи для жёсткого ультрафиолетового излучения, делая его более мягким и менее эффективным.

Таким образом, кипячение — это менее надёжный, но более универсальный способ физического обеззараживания воды, не требовательный к различным условиям. Тогда как ультрафиолетовое излучение — это более надёжный физический метод дезинфекции, тогда как он менее универсален и требует дополнительной подготовки воды.

Итак, физические методы обеззараживания воды имеют определённые ограничения, хотя и менее опасны, чем реагентная дезинфекция.

По материалам Выбор фильтров для воды : http://voda.blox.ua/2008/06/Kak-vybrat-filtr-dlya-vody-18.html

Методы обеззараживания воды классифицируются на физические (нереагентные) и химические (реагентные).

Нереагентные методы обеззараживания воды: кипячение, обработка ультрафиолетовым (УФ) излучением, гамма-лучами, ультразвуком, электрическим током высокой частоты и пр. Нереагентные методы имеют преимущества, поскольку не приводят к образованию в воде остаточных вредных веществ.

Кипячение в течение 30 мин. применяется при местном водоснабжении вызывает на только гибель вегетативных форм, которая наступает уже при 80 0 С в течение 30 сек., но и спор микроорганизмов.

Обеззараживание воды коротковолновым УФ-излучением (l=250-260 нм) за счет фотохимического расщепления белковых компонентов мембран бактериальных клеток, вибрионов и яиц гельминтов вызывает быструю гибель вегетативных форм и спор микроорганизмов, вирусов и яиц гельминтов, устойчивых к хлору. Ограничение - метод не используется для воды с высокой мутностью, цветностью и содержащей соли железа.

Реагентные методы обеззараживания воды: обработка ионами серебра, озонирование, хлорирование.

Обработка ионами серебра приводит к инактивации ферментов протоплазмы бактериальных клеток, потери способности к размножению и постепенной гибели. Серебрение воды может осуществляться разными способами: фильтрацией воды через песок, обработанный солями серебра; электролизом воды с серебряным анодом в течение 2-х часов, что ведет к переходу катионов серебра в воду. Преимуществом метода является долгое хранение посеребренной воды. Ограничение - метод не используется для воды с большим содержанием взвешенных органических веществ и ионов хлора.

Озонирование основано на окислении органических веществ и других загрязнений воды озоном О 3 - аллотропной модификацией кислорода, обладающим более высоким окислительным потенциалом и в 15 раз большей растворимостью. Озон в большей степени расходуется на окисление органических и легко окисляющихся неорганических веществ, чем обеззараживание. Время, необходимое для обеззараживания озоном, составляет 1-2 мин. Применяемая доза озона составляет 0,5-0,6 мг/л. Обязательным условием озонирования является создание остаточного количества озона в воде (0,1-0,3 мг/л) для предотвращения роста и размножения патогенных микроорганизмов. Преимуществом метода является отсутствие остаточных веществ, дезодорирование воды, удаление цветности, короткое время реакции и уничтожение вирусов. Однако метод требует дешевых источников электроэнергии, поскольку озоновоздушную смесь получают при помощи энергоёмкого процесса - "тихого" электрического разряда на озонаторе.

Хлорирование – наиболее доступный и дешевый способ обеззараживания. Хлорирующие агенты делят на 2 класса: 1) анион Cl - (газообразный Cl 2 , хлорамин, хлорамины Б и Т, дихлорамины Б или Т); 2) т.н. "активный хлор" - гипохлорит-ион = анион ClO - [гипохлорит кальция Ca(OCl) 2 , гипохлорит натрия NaOCl, хлорная известь – смесь гипохлорита кальция, хлорида кальция, гидроокиси кальция и воды]. Бактерицидный эффект объясняется действием хлорноватистой кислоты, образующейся по реакции Cl 2 + H 2 O ® HOCl + HCl; активного хлора: HOCl ® OCl - + H + и хлористой кислоты НСlO 2 . Механизм обеззараживания связан с взаимодействием активных веществ с SH-белками клеточной оболочки бактерий. Недостатки метода: при хлорировании споры сибирской язвы, возбудители туберкулеза, яйца и личинки гельминтов, цисты амебы и риккетсии Бернета остаются жизнеспособными.


Обеззараживание воды хлорированием требует предварительного экспериментального определения концентрации активного хлора в хлорирующем препарате (в норме 25-35%) и хлорпоглощаемости воды, которая зависит от степени загрязнения воды органическими веществами и микроорганизмами, на окисление и обеззараживание которых расходуется хлор.

Условиями эффективного хлорирования являются соблюдение продолжительности контакта хлор-агента с водой и ее компонентами (30 мин. в теплый и жаркий период года, 60 мин. – в холодный); создание остаточного хлора 0,3-0,5 мг/л. Хлорпоглощаемость воды и концентрация остаточного хлора в сумме представляют собой хлорпотребность воды.

Ограничение применения обеззараживания воды препаратами, содержащими «активный хлор», касается воды, загрязненной промышленными сточными водами с содержанием фенола и других ароматических соединений, что требует «постпереломного» хлорирования, ведущего к образованию хлордиоксинов - веществ, обладающих высокой токсичностью и кумулятивностью в организме человека. Признаком их образования является сильный «аптечный» запах воды. Для предотвращения образования хлордиоксидов при хлорировании загрязненной промышленными стоками воды применяют газообразный хлор с преаммонизацией (предварительной обработкой воды аммиаком).

При невозможности экспериментального определения хлорпоглощаемости воды используют метод перехлорирования . Перехлорирование проводят избыточными дозами хлорирующего препарата (обычно в непроточной воде ограниченного объема). При выборе дозы активного хлора учитывают тип и степень загрязненности воды в источнике водоснабжения и эпидемическую ситуацию на территории сбора воды в используемый источник (обычно доза колеблется в пределах 10-20 мг активного хлора на 1 литр воды).

Что подразумевают под обеззараживанием питьевой воды? Под этим понимают ряд мероприятий, направленных на полное или частичное уничтожаются в воде вирусов, бактерий, способных вызвать множество инфекционных заболеваний.

Но при этом стоит понимать, что полное очищение воды от всех бактерий сделает ее непригодной для применения с пищей. Вот почему следует со всей внимательностью отнестись как к выбору конкретного метода обеззараживания, так и к проведению химико-биологического анализа пробы воды. Есть несколько методов воздействия на вредоносные микроорганизмы:

  • Химические или реагентные;
  • Физические или безреагентные;
  • Комбинированные.

Микроорганизмы


Каждый из этих методов позволяет избавиться от любых вредоносных микроорганизмов определенным способом. К примеру, химические методы работают с помощью специальных коагулянтов-реагентов, которые добавляют в воду именно с целью обеззараживания. Это хлорирование, озонирование, применение гипохлорита натрия, серебра, кремния и многих других веществ, которые помогают либо избавиться от «вредителей», либо как минимум затормозить их размножение. Безреагентные методы — обеззараживание воды с применением физического безреагентного воздействия на жидкость. Это УФ-излучение, электроимпульсное обеззараживание и прочие подобные способы.

Комбинированные методы применяют с использованием как физического, так и химического воздействия попеременно. Такой подход к обеззараживанию максимально эффективен и, как правило, позволяет добиться не только полного обеззараживания жидкости, но и недопущения вторичного размножения бактерий и вирусов в воде. Кроме того, применение нескольких способов позволяет еще и очистить ее от иных загрязнителей.

Химическое обеззараживание воды


К ним относится обработка жидкости окислителями-коагулянтами: озоном, гипохлорит натрием, хлором и другими. В их числе и ионы тяжелых металлов. Чтобы достичь максимально стойкого эффекта обеззараживания таким методом, нужно максимально точно уметь определять дозу реагента, который будете вводить, и далее обеспечить необходимый промежуток времени для контакта воды с веществом.

Доза определяется расчетными методами, а также пробным обеззараживанием. Примечательно, что очень важно точно рассчитать дозу. Так как малая доза может не просто не подействовать, но еще и обеспечить быстрый рост количества бактерий в растворе. Примером такого эффекта можно считать озон, который в малых количествах убивает часть бактерий, образовывая особые соединения, которые пробуждают ранее спящие бактерии и создает идеальные условия для размножения.

Для того, чтобы обеспечить длительный эффект, дозу реагента рассчитывают, как правило, с избытком, который гарантированно уничтожит микроорганизмы в воде, а в период после обеззараживания воды не даст им размножиться.

Но избыток должен быть ровно такой, чтобы произошло обеззараживание, но при этом люди, потребляющие воду в качестве питья, не отравились, так как большая часть реагентов является довольно токсичной и может образовывать стойкие мутагенные и канцерогенные соединения.

  • Хлорирование

Не смотря на наличие множества современных методов очистки и обеззараживания воды, в нашем государстве продолжают применять в водоснабженческой практике хлорирование. Объясняется это простотой в использовании, обслуживании, а также высокой эффективность и, конечно, дешевизной реагента. Важным плюсом в применении названного метода является в первую очередь его последействие. Даже при небольшом избытке хлора (например, в воде содержится около 0,5 мг/л остаточного хлора) рост микроорганизмов вторично не происходит.

Но есть в данном способе и свои минусы. Хлор при окислении обладает весьма высокой степенью мутагенности, токсичности, канцерогенности. Даже следующая за этим очистка воды при помощи активированного угля не удаляет полностью образованные в процессе хлорирования соединения. Они обладают довольно высокой стойкостью и сильно загрязняют питьевую воду. Затем, как результат, стоки ведут в реки, а далее токсичные вещества уходят вниз по течению. Поэтому пока ведется поиск реагентов, которые будут обладать хорошей способностью обеззараживать питьевую воду, неся при этом меньше «побочных эффектов» в процессе применения.

Пока самых положительных отзывов добилось применение диоксида хлора, у которого способность воздействовать на вирусы и бактерии гораздо выше, чем у простого хлора. У этого же реагента и степень загрязнения воды на порядок меньше. Правда, диоксид хлора достаточно дорогой и его нужно производить сразу же на месте применения. Кроме того, его перспективы не распространяются далее небольших установок с невысокой производительностью.

Пользуются при хлорировании хлором, хлорной известью и иными производными элемента. Помимо главной функции (имеется ввиду дезинфекция), хлор помогает следить также за запахом, вкусовыми качествами, предотвращает рост водорослей, поддерживает чистоту фильтров, удаляет марганец, железо, разрушает сероводород, обесцвечивает и т.д.

Риск применения хлора в большей мере связывают с образованием тригалометанов. Производные метана в любой форме обладают сильно выраженным канцерогенным воздействием на человеческий организм, способствуя тем самым росту раковых клеток. Примечательно, что кипячение хлорированной воды, что многие считают выходом из сложившейся ситуации, только усугубляет ситуацию, так как под влиянием высоких температур происходит образование в хлорированной воде очень сильного яда под названием диоксин.

Исследования показывают, что хлор и иные его производные вызывают болезни ЖКТ, печени, сердечно-сосудистой системы, а также гипертонию, атеросклероз, разные виды аллергии, воздействует на кожу, волосы. Хлор разрушает белок в организме.

Многие считают, чтобы образовывалось после хлорирования как можно меньше вредных соединений, следует предварительно очистить от разнообразных примесей воду, так как соединения образовываются из-за взаимодействия хлора с растворенными в жидкости органическими веществами.

  • Озонирование

Озонирование жидкости позволяет разлагать частицы озона в растворе, образовывая при этом атомарный кислород. Он позволяет разрушить ферментную систему микробной клетки и окислить часть соединений, которые могут придавать воде довольно навязчивый неприятный запах. Данный способ требует точности расчетов, так как при избытке озона в воде может появиться неприятный запах. Кроме того, чересчур большое количество озона может ускорить процесс коррозии металла. Отражается это не только на системе водопровода, но и на бытовой технике и посуде, которая контактирует с этой водой.

С точки зрения гигиены это самый лучший химический метод, который может обеспечить максимально быстрое и, что крайне важно, безопасное для человека и окружающего мира обеззараживание воды без последующего образования канцерогенных, высокотоксичных соединений. Но такой способ требует внушительного расхода электроэнергии, эксплуатации сложной аппаратуры, высококвалифицированного обслуживания. А потому этот способ максимально эффективно работает в основном в системах централизованного водоснабжения. Стоит упомянуть, что он довольно дорогой в применении.

Сам газ довольно опасен в процессе производства, токсичен и даже взрывоопасен. Многие фирмы предлагают стационарные установки для коттеджей, но стоит понимать, что без квалифицированного обслуживания и систем контроля такие аппараты могут отравить воздух и воду и как результат -владельцев. Также всегда существует риск возникновения взрывоопасной ситуации на подобной установке.

По некоторым данным после проведения озонирования может произойти вторичный рост числа бактерий. Связано это с тем, что после такой обработки воды начинается разложение фенольных групп гуминовых веществ. А они способствуют активации других микроорганизмов, которые до обработки находились в «спящем» состоянии. А потому 100% высокого качества очистки от озона ждать не приходится. Но, не в пример хлору, озон относится по опасности к первой категории. Также из-за влияния озона на металлы (коррозия) прежде чем обработанную воду пускать по трубам, необходимо выждать период распада озона. Исключением может послужить транспортировка только что обработанной воды из некоторых видов пластмассы, бетона, асбестоцемента и других подобных материалов.

  • Полимерные реагенты/антисептики

Отдельный реагентный способ очистки воды – это обеззараживание полимерными реагентами, которые относятся к классу полимерных антисептиков. Самым известным представителем данного класса является Биопаг. Если сравнивать с хлором и озоном, то этот препарат не наносит вреда здоровью, не оказывает местное раздражающее действие на слизистые поверхности и кожу, а также не вызывает аллергических реакций. Также среди преимуществ: отсутствие запаха, цвета, вкуса у воды по завершении процесса очищения, отсутствие коррозийного влияния на металлы и вреда для купальных костюмов. Применение подобных антисептиков крайне простое, но не смотря на это они обладают долговременным эффектом дезинфекции. Этот вид обеззараживания воды используется наиболее часто в общественных бассейнах.

  • Иные реагенты

Также в реагентных методах применяют разнообразные соединения тяжелых металлов, йод, бром и т.п. Но они требуют определенных знаний при применении и точности расчетов. С другой стороны, дезинфекцию питьевой воды с их помощью проводят гораздо эффективнее и качественнее. Обеззараживание при помощи ионов тяжелых металлов зачастую выделяют в отдельный метод — олигодинамическое обеззараживание воды. Чаще всего используются ионы благородных металлов. Яркий пример – серебро. Но нужно понимать, что оно не убирает из воды, а лишь сдерживает на время действия рост бактерий. Кроме того, для этого метода нужно определенное количество указанного вещества. Серебро быстро накапливается в организме, а вот выводится очень тяжело и медленно.

К другим реагентам, которые не применяются повсеместно, можно отнести сильные окислители, как, например, гипохлорит натрия. Применяют конкретно этот реагент в тех случаях, когда показатели воды довольно нестабильны и часто меняются. Показанием к применению может стать наличие в жидкости планктона, органических веществ, которые влияют на степень цветности воды. Использование гипохлорида натрия, который получают путем проведения электролиза 2-4% растворов хлорида натрия (это простая поваренная соль) или минерализованных вод, считают одним из наиболее перспективных и безопасных для человека и окружающей среды способов очистки воды. По своему химико-бактерицидному действию гидрохлорид натрия идентичен растворенному хлору, но при этом обладает длительным действием и в большей мере безопасен для здоровья. Также он более безопасен и для окружающей среды.

Из недостатков следует выделить: повышенное потребление реагента из-за низкой степени его конверсии. Остальная часть остается в воде «баластом», повышая солесодержание в растворе. Снижение количества соли после обеззараживания зачастую требует гораздо большего количества затрачиваемой электроэнергии и расхода анодного материала. А это уже намного дороже хлорирования.

Физическое обеззараживание воды


К физическим относят те способы, которые осуществляют воздействие на жидкость УФ-лучами, ультразвуком и иными процессами. Сперва проводится предварительная очистка: воду подвергают фильтрации и коагуляции. Это помогает удалить взвешенные частицы, внушительную часть находящихся в жидкости микроорганизмов, яйца гельминтов.

Во время применения ультрафиолетового излучения нужно подводить к имеющемуся объему воды определенное количество энергии. Высчитывают ее количество так: мощность излучения, которую умножают на время контакта. При этом следует определить зараженность биоорганизмами воды. В данном случае высчитывают число микроорганизмов на 1 мл жидкости. Также определяют в воде наличие индикаторных бактерий, которых относят к группе кишечной палочки (в сокращении БГКП). Е. coly – основной ее представитель – определяется довольно просто.

Вообще следует знать, что БГКП присутствуют в воде, которая загрязнена фекалиями. Эти организмы обладают максимально высокой сопротивляемостью к процессам обеззараживания. E.coly является самой безвредной из группы и помогает определить бактериальное загрязнение воды. Согласно СанПиН 2.1.4.1074-01, общее число бактерий не должно превышать 50 на 100 мл колифомных бактерий.

Но данная норма не всегда может коррелироваться с обеззараживанием воды от вирусов. Так, например, ультрафиолетовое излучение и хлор в отдельности обеспечивают разные уровни очистки и обеззараживания воды по коли-индексу. Таким образом, УФ-лучи лучше воздействуют на биоорганизмы, чем хлор. А вот озон будет примерно по результатам очистки равен УФ-лучам.

  • Очистка воды УФ-лучами

УФ-лучи могут воздействовать на клеточный обмен, на ферментные системы клеток бактерий. Они уничтожают вегетативные и, что достаточно важно, споровые бактерии, которые уничтожить достаточно тяжело. Органолептические свойства воды при этом не меняются. Подобный вид обработки не можетвлиять на образование токсических веществ, а потому и верхнего порога дозы тоже нет. Соответственно, увеличивая дозу УФ-излучения, вы вполне сможете добиться самых лучших результатов очистки и обеззараживания воды. Но есть у этого способа и недостаток – полное отсутствие последействия. Еще такие процессы требуют от заказчика капитальных вложений в сферу: гораздо больших, чем при хлорировании, но ощутимо меньших, чем при озонирование. Потому для индивидуального пользования такие установки будут самым лучшим вариантом, так как меньшие аппараты будут по себестоимости выходить примерно на уровне хлорирования, только со всеми вытекающими плюсами данного вида обеззараживания воды.

Снизить эффективность такой установки может чаще всего один фактор: загрязнение кварцевых ламп минеральными отложениями солей, которые в своей основе имеют минерально-органический состав. Решается данный вопрос просто – либо добавляют пищевые кислоты в воду (уксус отлично справляется с подобной проблемой), циркулирующие через установку, либо проводят механическое очищение поверхности ламп.

Обеззараживание УФ-излучением проводят только после предварительной очистки воды, так как имеющиеся в воде загрязнения могут просто свести весь процесс на нет, экранизируя УФ-лучи. Наиболее оптимальная длина волн – 200-295 нм. Максимально результативной является «золотая середина» — 260 нм. Этот уровень излучения активно разрушает цитоплазму клеток, влияя на белковые коллоиды.

Ультрафиолетовое излучение без преувеличений на сегодня самый эффективный метод обеззараживания воды. Данное средство относится к невидимой коротковолновой части спектра. Срок службы УФ-лампы составляет в среднем несколько тысяч часов.

  • Обеззараживание ультразвуком

Обеззараживание воды с применением ультразвукового оборудования основывается на способности определенных звуковых частот вызывать кавитацию, т.е. образовывать пустоты, которые создают большую разницу в давлении. Подобный диссонанс ведет к разрыву клеточных оболочек и последующей гибели клетки бактерии. Зависит уровень бактерицидного действия от интенсивности колебаний звука. Но данные установки требуют определенного оборудования, квалифицированного обслуживания, также они довольно дорогостоящие.

Ультразвук производится генератором – магнитострикционным или пьезоэлектрическим. Чтобы обеззараживание проводилось максимально эффективно, создается частота звука в 48 тысяч Гц. Говоря об эффективности ультразвука, стоит упомянуть такой факт: частота в 20 тысяч Гц позволяет резать металлы и даже обрабатывать алмазы. Но при низкой частоте ультразвук может спровоцировать рост числа бактерий в воде. А потому знание протекающих процессов и обслуживания недешевой аппаратуры у пользователя подобной установки должно быть обязательно.

  • Кипячение

Но самым популярным и распространенным в народе физическим способом останется еще на очень длительное время кипячение воды, которое дает максимально высокие результаты: уничтожаются практически все вредоносные бактерии, бактериофаги, вирусы, антибиотики и многие другие биологические объекты. Также устраняются растворенные в жидкости газы и заметно уменьшается pH (жесткость) воды. Вкусовые качества воды не подвергаются сильному изменению.

Карикатура на методы очистки воды

Для многих случаев самыми эффективными станут именно комплексные подходы к обеззараживанию воды. Здесь имеется ввиду применение безреагентных и реагентных методов. Примером может стать УФ-обеззараживание и последующее хлорирование. Таким образом, не только устраняются вредоносные микроорганизмы, но и будет гарантированно отсутствие вторичного биозазаражения. Примечательно, что такой комбинированный подход позволит не только уничтожить в воде микроорганизмы, но и снизить содержание реагентов. Это позволит не только сэкономить средства на реагентах, но и в целом улучшить состояние самой воды.

Также часто применяется озонирование с последующим проведением хлорирования. Благодаря этому вторичное биозаражение произойти в принципе не должно. Также резко снижается после процедуры образование в воде токсичных хлорсодержащих соединений.

Стоит упомянуть такой способ обеззараживания и очистки воды, как фильтрование. Но в данном случае полная очистка будет возможна лишь тогда, когда у фильтрующих элементов ячейки по размерам будут меньше, чем фильтруемые микроорганизмы, а это приблизительно 1 микрон. Но даже в этом случае из воды таким образом можно удалить лишь бактерии. Вирусы, как известно, обладают гораздо меньшими габаритами. Для таких случаев применяют фильтры с порами в 0,1-0,2 мкм.

Сейчас постепенно набирает популярность новая система фильтрации под названием «Пурифайер». По заявлениям производителей такая очистка воды довольно эффективна, так как в аппарате используются несколько систем обеззараживания воды. Наиболее распространенными пурифайерами являются те, которые используют максимально эффективную систему фильтрации.

Представляет собой данный агрегат очиститель и нагреватель воды с последующей поставкой. Отдельные модели могут не только нагревать воду до 95 градусов, но и охлаждать до 4 градусов. Подключают установку к трубам с холодным водоснабжением с помощью специальной пластиковой трубки, которую укладывают под навесной потолок, плинтус или кабель-канал.

Этот аппарат рассчитан на офисы или для домашнего пользования. Изготовитель также заявляет, что полученная таким образом вода будет обходиться гораздо дешевле, чем бутилированная. Данный факт подтвердить или опровергнуть сложно, так как статистика применения пока еще на отечественных просторах не была озвучена.

Новые способы обеззараживания воды

Последнее время появляются более «молодые» способы очистки и обеззараживания воды: электроимпульсный и электрохимический. Самыми яркими отечественными представителями данной техники являются «Сапфир», «Изумруд», «Аквамарин». Они работают с помощью диафрагменного электрохимического реактора, через который пропускают воду. Реактор разделен металлокерамической мембраной со способностью проводить ультрафильтрафию на анодную и катодную области. Когда в катодные и анодные камеры подают ток, то в них начинают образовываться кислый и щелочной растворы, а далее – электролитическое образование (которое еще называют активным хлором). В подобной среде довольно быстро гибнут почти все вредоносные микроорганизмы, а также происходит разрушение некоторых соединений, которые растворены в воде.

Производительность такого аппарата зависит в целом от конструкции проточного элемента и определенного количества элементов. Также могут использоваться в отдельных агрегатах анолиты и католиты. Их чаще всего применяют в медицинской сфере. Но стоит понимать, что вода лишь обеззараживается и очищается. Заявления изготовителей о том, что полученный раствор становится чудодейственным и целительным из-за изменения структуры – лишь рекламный ход. Этот метод назван ЭХА-технологией.

Электроимпульсное воздействие подразумевает под собой электрический заряд в воде, из-за чего возникает определенная степень ударной волны сверхвысокого давления, затем световое излучение и, как результат – образование озона, который, как мы уже узнали ранее, крайне губителен для микроорганизмов и биологических объектов в воде в целом. Такой способ обеззараживания жидкости при правильном обслуживании устройства и проведении всех процедур поможет сделать воду максимально чистой, а благодаря образовавшемуся озону – некоторые элементы-загрязнители будут устранены из обеззараживаемой жидкости.

Но перечисленные выше новые способы воздействия на микроорганизмы в бытовых условиях не могут применяться ввиду сложности протекающих процессов и необходимых знаниях, которые нужно будет применять на практике. Кроме того такое оборудование потребует основательных капиталовложений.

Стоит упомянуть, что изначально санитарными нормами не подразумевается полное уничтожение всех вредоносных микроорганизмов, которые находятся в воде. Целью обеззараживания на самом деле стало удаление или инактивация самых опасных для здоровья человека бактерий, вирусов и иных биологических элементов, так как полностью стерильная вода может нанести вред здоровью человека.

Учитывая необходимость очищения воды в первую очередь для здоровья человека, стоит выбирать самые оптимальные варианты дезинфекции. Но прежде чем предпринимать те или иные решения, необходимо определить уровень загрязнения воды не только биологическими и минеральными соединениями, но и микроорганизмами. Правильное выявление причин поможет подобрать максимально верный вариант.

Питьевая вода является источником жизни и здоровья человека, однако, при ее употреблении человек может приобрести множество нежелательных микроорганизмов. Как известно, все болезнетворные бактерии средой своего обитания выбирают воду, в которой могут свободно размножаться и существовать. Именно по этой причине, с развитием человечества, обострился вопрос очистки воды.

Процесс, который уничтожает микроорганизмы, находящиеся в воде, называется обеззараживанием. На сегодняшний день разработано несколько методов обеззараживания:
химические методы (хлорирование, озонирование, очистка тяжелыми металлами);
физические методы (кипячение, ультрафиолетовое излучение, электронный импульс, обеззараживание ультразвуком).

Самым простым и наиболее эффективным по праву признан способ хлорирования, но с течением времени выяснилось, что в процессе хлорирования вода насыщается разнообразными побочными продуктами, которые способны причинить вред здоровью человека. Заменил хлорирование способ обеззараживания воды воздействием ультрафиолета.

Ультрафиолет это электромагнитное излучение, которое не поддается зрительному восприятию. Под воздействием энергии фотона, химическая связь в молекуле разрывается. Повреждая молекулы ДНК и РНК, ультрафиолет уничтожает бактерии и другие микроорганизмы. Диапазон волн УФ-излучения находится в границах от 100 до 400 нм.

Дезинфекция ультрафиолетовым (УФ) излучением может использоваться как для воды, так и для воздуха, что стало реальным после изобретения специальных ламп, ртутных или ксеноновых. Дезинфекция воды УФ проводится при помощи специальных установок, в которых применяется свет с длинной волны 254 нм, такой свет способен уничтожать даже споровые формы бактерий.

Метод очищения воды действием ультрафиолета имеет множество преимуществ, к ним относятся следующие:

такое обеззараживание считается экономически выгодным вариантом, так как проведение работ требует минимальное количество затрат;
высокая эффективность полученного результата, ультрафиолет уничтожает не только вегетативные микроорганизмы, но и спорообразующие;
ультрафиолетовое излучение служит высокоточным оружием по борьбе с вредоносными микроорганизмами, оно уничтожает лишь живые микроорганизмы, при этом не воздействует на химический состав воздуха и воды;
обеззараживание ультрафиолетом может проводиться в качестве предупредительных мер, оборудование для обеззараживания послужит барьером для бактерий и вирусов;
экологическая чистота процесса, этот процесс абсолютно безопасен для жизнедеятельности человека;
другие преимущества: краткость процесса, неизменность вкусовых качеств, низкий уровень капитальных затрат, отсутствие сложностей в эксплуатационных установках.

К сожалению, как и в любом процессе очистки, здесь имеются и свои недостатки:
после обеззараживания необходима фильтрация воды, так как под действиями ультрафиолета, клетки бактерий и вирусов разрушаются, оставляя за собой различные белковые фрагменты;
после дезинфекции вода может вновь подвергнуться загрязнению, на этапе транспортировки, так как ультрафиолет после применения не остается в воде после изъятия ее из бактерицидной установки.

Воздействием ультрафиолетовых лучей применяются в ходе очистки питьевой воды, в ряде пищевых производств, иногда для очистки технической воды и даже в системах городского водоснабжения. Под воздействием ультрафиолета погибают такие микробы как E. Coli, Proteus Vulgaris, Vibrio Choleras, а также возбудители сальмонеллы, тифа и кишечная палочка.

Корпус бактерицидной установки выполнен, как правило, из нержавеющей стали. Внутри этого корпуса находятся кварцевые трубки с бактерицидными лампами. На внешней части корпуса имеется датчик, который измеряет мощность излучения. Также присутствует сигнализация, она подает сигналы в случае проникновения загрязненной воды или при повреждении облучателей.

Вода, проникая в корпус установки, проходит через бактерицидные лампы, где подвергается воздействию ультрафиолетовых лучей, тем самым очищаются от всех микроорганизмов. В ходе эксплуатации установка нуждается в периодической очистке кварцевых трубок от осадка. Состояние их загрязнения определяет датчик, измеряя интенсивность УФ–излучения.

По отношению к патогенным микроорганизмам самым эффективным способом уничтожения считается ультрафиолетовое облучение, так как вирусы здесь уничтожаются дозой в 40 мДж/см?, а им достаточно и 10-16 мДж/см?.

Технологии УФ–обеззараживания могут применяться на фоне других мероприятий по дезинфекции. Для повышения эффективности обеззараживания возможно применение обработки малыми дозами озона совместно с ультрафиолетовым облучением.

В процессе очистки питьевой воды предпочтительнее использование той технологии, что позволит исключить применение вредных химических реагентов, такой технологией стало

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.