Лучевая диагностика. Тема: Основные методы лучевой диагностики Специальные методы лучевой диагностики

Лучевая диагностика — наука о применении излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека в целях профилактики и диагностики заболеваний.

Роль лучевой диагностики

в подготовке врача и в медицинской практике в целом постоянно возрастает. Это связано с созданием диагностических центров, а также диагностических отделений, оснащенных компьютерными и магнитно-резонансными томографами.

Известно, что большая часть (около 80%) заболеваний диагностируется с помощью приборов лучевой диагностики: ультразвуковых, рентгеновских, термографических, компьютерных и магниторезонансных томографических аппаратов. Львиная доля в этом перечне принадлежит рентгеновским приборам, имеющим много разновидностей: базовые, универсальные, флюорографы, маммографы, дентальные, передвижные и др. В связи с обострением проблемы туберкулеза в последнее время особенно возросла роль профилактических флюорографических осмотров с целью диагностирования этого недуга на ранних стадиях.

Есть еще одна причина, сделавшая актуальной именно проблему рентгенодиагностики. Удельный вес последней в формировании коллективной дозы облучения населения Украины за счет искусственных источников ионизирующей радиации составляет около 75%. Для уменьшения дозы облучения пациента современные рентгенаппараты имеют в своем составе усилители рентгеновского изображения, но таких в Украине сегодня менее 10% от наличного парка. А он весьма внушителен: в лечебно-профилактических учреждениях Украины по состоянию на январь 98 г. функционировало свыше 2460 рентгеновских отделений и кабинетов, где ежегодно выполнялось 15 млн. рентгенодиагностических и 15 млн. флюорографических обследований пациентов. Есть основания утверждать, что состояние этой отрасли медицины определяет здоровье всей нации.

История становления лучевой диагностики

Лучевая диагностика за последнее столетие претерпела бурное развитие, трансформацию методик и аппаратуры, завоевала прочные позиции в диагностике и продолжает удивлять своими поистине неисчерпаемыми возможностями.
Родоначальник лучевой диагностики, рентгеновский метод появился после открытия в 1895 г. рентгеновского излучения, что дало начало развитию новой медицинской науке — рентгенологии.
Первыми объектами исследования были костная система и органы дыхания.
В 1921 году была разработана методика рентгенографии на заданной глубине — послойно, и в практику широко вошла томография, значительно обогатившая диагностику.

На глазах одного поколения в течение 20-30 лет рентгенология вышла из темных кабинетов, изображение с экранов перешло на телемониторы, а затем трансформировалось в цифровое на мониторе компьютера.
В 70-80-е годы в лучевой диагностике происходят революционные преобразования. В практику внедряются новые методы получения изображения.

Этот этап характеризуется следующими особенностями:

  1. Переходом от одного вида излучения (рентгеновского), применяемого для получения изображения к другим:
  • ультразвуковому излучению
  • длинноволновому электромагнитному излучению инфракрасного диапазона (термография)
  • излучению радиочастотного диапазона (ЯМР — ядерно-магнитный резонанс)
  1. Использованием ЭВМ для обработки сигналов и построения изображения.
  2. Переходом от одномоментного изображения к сканированию (последовательная регистрация сигналов от разных точек).

Ультразвуковой метод исследования пришел в медицину значительно позже рентгеновского, но развивался еще стремительнее и стал незаменимым благодаря своей простоте, отсутствию противопоказаний вследствие безвредности для пациента и большой информативности. За короткое время был пройден путь от серо-шкального сканирования до методик с цветным изображением и возможностью изучения сосудистого русла — допплерографии.

Один из методов — радионуклидная диагностика тоже получила в последнее время широкое распространение благодаря низким лучевым нагрузкам, атравматичности, неаллергичности, широкому спектру изучаемых явлений, возможности сочетания статических и динамических методик.

*Профилактическое обследование (флюорография выполняется 1 раз в год для исключения наиболее опасной патологии легких) *Показания к применению

*Метаболические и эндокринные болезни (остеопороз, подагра, сахарный диабет, гипертиреоз и т. д.) *Показания к применению

*Болезни почек (пиелонефрит, МКБ и т. д.), при этом рентгенография выполняется с контрастом Правосторонний острый пиелонефрит *Показания к применению

*Заболевания желудочно-кишечного тракта (дивертикулез кишечника, опухоли, стриктуры, грыжа пищеводного отверстия диафрагмы и т. д.). *Показания к применению

*Беременность – существует вероятность негативного влияния излучения на развитие плода. *Кровотечение, открытые раны. За счет того, что сосуды и клетки красного костного мозга очень чувствительны к излучению у пациента может произойти нарушения кровотока в организме. *Общее тяжелое состояние пациента, чтобы не усугубить состояние больного. *Противопоказания к применению

*Возраст. Детям до 14 лет не рекомендуется делать рентген, так как до периода полового созревания человеческий организм слишком подвержен воздействию рентгеновских лучей. *Ожирение. Не является противопоказанием, но избыточный вес затрудняем процесс диагностики. *Противопоказания к применению

* В 1880 году французские физики, братья Пьер и Поль Кюри, заметили, что при сжатии и растяжении кристалла кварца с двух сторон на его гранях, перпендикулярных направлению сжатия, появляются электрические заряды. Это явление было названо пьезоэлектричеством. Ланжевен попробовал зарядить грани кварцевого кристалла электричеством от генератора переменного тока высокой частоты. При этом он заметил, что кристалл колеблется в такт изменению напряжения. Чтобы усилить эти колебания, ученый вложил между стальными листами-электродами не одну, а несколько пластинок и добился возникновения резонанса – резкого увеличения амплитуды колебаний. Эти исследования Ланжевена позволили создавать ультразвуковые излучатели различной частоты. Позже появились излучатели на основе титаната бария, а также других кристаллов и керамики, которые могут быть любой формы и размеров.

* УЛЬТРАЗВУКОВОЕ ИССЕДОВАНИЕ В настоящее время ультразвуковая диагностика получила широкое распространение. В основном при распознавании патологических изменений органов и тканей используют ультразвук частотой от 500 к. Гц до 15 МГц. Звуковые волны такой частоты обладают способностью проходить через ткани организма, отражаясь от всех поверхностей, лежащих на границе тканей разного состава и плотности. Принятый сигнал обрабатывается электронным устройством, результат выдается в виде кривой (эхограмма) или двухмерного изображения (т. н. сонограмма – ультразвуковая сканограмма).

* Вопросы безопасности ультразвуковых исследований изучаются на уровне международной ассоциации ультразвуковой диагностики в акушерстве и гинекологии. На сегодняшний день принято считать, что никаких отрицательных воздействий ультразвук не оказывает. * Применение ультразвукового метода диагностики безболезненно и практически безвредно, так как не вызывает реакций тканей. Поэтому противопоказаний для ультразвукового исследования не существует. Благодаря своей безвредности и простоте ультразвуковой метод имеет все преимущества при обследовании детей и беременных. * Вредно ли ультразвуковое исследование?

*ЛЕЧЕНИЕ УЛЬТРАЗВУКОМ В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 – 44 к. Гц и от 800 к. Гц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово - и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Ультразвуковые процедуры дозируются по интенсивности используемого ультразвука и по продолжительности процедуры. Обычно применяют малые интенсивности ультразвука (0, 05 – 0, 4 Вт/см 2), реже средние (0, 5 – 0, 8 Вт/см 2). Ультразвуковую терапию можно проводить в непрерывном и импульсном режимах ультразвуковых колебаний. Чаще применяют непрерывный режим воздействия. При импульсном режиме уменьшаются тепловой эффект и общая интенсивность ультразвука. Импульсный режим рекомендуется при лечении острых заболеваний, а также для ультразвуковой терапии у детей и пожилых людей с сопутствующими заболеваниями сердечно -сосудистой системы. Ультразвук воздействует лишь на ограниченную часть тела площадью от 100 до 250 см 2, это рефлексогенные зоны или область поражения.

Внутриклеточные жидкости меняют электропроводность и кислотность, изменяется проницаемость клеточных мембран. Некоторое представление об этих событиях дает обработка крови ультразвуком. После такой обработки кровь приобретает новые свойства – активизируются защитные силы организма, повышается его сопротивляемость инфекциям, радиации, даже стрессу. Эксперименты на животных показывают, что ультразвук не оказывает мутагенного или канцерогенного действия на клетки – время его воздействия и интенсивность настолько незначительны, что такой риск практически сводится к нулю. И, тем не менее, врачи, основываясь на многолетнем опыте использования ультразвука, установили некоторые противопоказания для ультразвуковой терапии. Это – острые интоксикации, болезни крови, ишемическая болезнь сердца со стенокардией, тромбофлебит, склонность к кровотечениям, пониженное артериальное давление, органические заболевания Центральной Нервной Системы, выраженные невротические и эндокринные расстройства. После многолетних дискуссий, приняли, что при беременности ультразвуковое лечение назначать также не рекомендуется.

*За последние 10 лет появилось огромное количество новых лекарственных препаратов, выпускаемых в виде аэрозолей. Они часто используются при респираторных заболеваниях, хронических аллергиях, для вакцинации. Аэрозольные частицы размером от 0, 03 до 10 мкм применяют для ингаляции бронхов и легких, для обработки помещений. Их получают с помощью ультразвука. Если такие аэрозольные частицы зарядить в электрическом поле, то возникают еще более равномерно рассеивающиеся (т. н. высокодисперсные) аэрозоли. Обработав ультразвуком лекарственные растворы, получают эмульсии и суспензии, которые долго не расслаиваются и сохраняют фармакологические свойства. *Ультразвук в помощь фармакологам.

*Весьма перспективной оказалась и транспортировка липосом – жировых микрокапсул, заполненных лекарственными препаратами, в ткани, предварительно обработанные ультразвуком. В тканях, подогретых ультразвуком до 42 – 45*С, сами липосомы разрушаются, а лекарственное вещество попадает внутрь клеток сквозь мембраны, ставшие проницаемыми под действием ультразвука. Липосомный транспорт чрезвычайно важен при лечении некоторых острых воспалительных заболеваний, а также в химиотерапии опухолей, поскольку лекарства концентрируются только в определенной области, почти не затрагивая другие ткани. *Ультразвук в помощь фармакологам.

*Контрастная рентгенография – это целая группа методов рентгенологического исследования, отличительной особенностью которых является использование в ходе исследования рентгеноконтрастных препаратов для повышения диагностической ценности снимков. Чаще всего контрастирование применяется для исследования полых органов, когда необходимо оценить их локализацию и объём, структурные особенности их стенок, функциональные характеристики.

Данные методы широко используются при рентгенологическом исследовании желудочнокишечного тракта, органов мочевыделительной системы (урография), оценке локализации и распространённости свищевых ходов (фистулография), особенностей строения сосудистой системы и эффективности кровотока (ангиография) и т. д.

*Контрастирование может быть инвазивным, когда контрастное вещество вводится в полость организма (внутримышечно, внутривенно, внутриартериально) с повреждением кожного покрова, слизистых оболочек, или неинвазивным, когда контрастное вещество глотается или нетравматично вводится по другим естественным путям.

* Рентгеноконтрастные вещества (препараты) – это категория диагностических средств, отличающихся по способности поглощать рентгеновское излучение от биологических тканей. Их используют для выделения структур органов и систем, не выявляемых или плохо выявляемых при обычной рентгенографии, рентгеноскопии, компьютерной томографии. * Рентгеноконтрастные вещества подразделяют на две группы. К первой группе относят препараты, поглощающие рентгеновское излучение слабее тканей тела (рентгенонегативные), ко второй – поглощающие рентгеновское излучение в значительно большей степени, чем биологические ткани (рентгенопозитивные).

*Рентгенонегативными веществами являются газы: двуокись углерода (СО 2), закись азота (N 2 О), воздух, кислород. Их используют для контрастирования пищевода, желудка, двенадцатиперстной и толстой кишки самостоятельно или в комплексе с рентгенопозитивными веществами (так называемое двойное контрастирование), для выявления патологии вилочковой железы и пищевода (пневмомедиастинум), при рентгенографии крупных суставов (пневмоартрография).

*Сульфат бария наиболее широко применяют при рентгеноконтрастных исследованиях желудочнокишечного тракта. Его используют в виде водной взвеси, в которую для повышения стабильности взвеси, большей адгезии со слизистой оболочкой, улучшения вкусовых качеств также добавляют стабилизаторы, противовспенивающие и дубящие вещества, вкусовые добавки.

*При подозрении на инородное тело в пищеводе применяют густую пасту сульфата бария, которую дают проглотить больному. В целях ускорения прохождения сульфата бария, например при исследовании тонкой кишки, его вводят в охлажденном виде либо добавляют к нему лактозу.

*Среди йодсодержащих рентгеноконтрастных веществ в основном используют водорастворимые органические соединения йода и йодированные масла. * Наиболее широко применяют водорастворимые органические соединения йода, в частности верографин, урографин, йодамид, триомбраст. При внутривенном введении эти препараты в основном выделяются почками, на чем основана методика урографии, позволяющая получить отчетливое изображение почек, мочевых путей, мочевого пузыря.

* Водорастворимые органические йодсодержащие контрастные вещества применяют также при всех основных видах ангиографии, рентгенологических исследованиях верхнечелюстных (гайморовых) пазух, протока поджелудочной железы, выводных протоков слюнных желез, фистулографии

* Жидкие органические соединения йода в смеси с носителями вязкости (перабродил, йодурон В, пропилйодон, хитраст), относительно быстро выделяемые из бронхиального дерева, используют для бронхографии, йодорганические соединения применяют при лимфографии, а также для контрастирования оболочечных пространств спинного мозга и вентрикулографии

*Органические йодсодержащие вещества, особенно водорастворимые, вызывают побочные эффекты (тошноту, рвоту, крапивницу, зуд, бронхоспазм, отек гортани, отек Квинке, коллапс, нарушение ритма сердца и др.), выраженность которых в значительной мере определяется способом, местом и скоростью введения, дозой препарата, индивидуальной чувствительностью пациента и другими факторами *Разработаны современные рентгеноконтрастные вещества, оказывающие значительно менее выраженное побочное действие. Это так называемые димерные и неионные водорастворимые органические йодзамещенные соединения (йопамидол, йопромид, омнипак и др.), которые вызывают значительно меньше осложнений, особенно при ангиографии.

Использование йодсодержащих препаратов противопоказано у больных с повышенной чувствительностью к йоду, с тяжелыми нарушениями функции печени и почек, при острых инфекционных болезнях. При появлении осложнений в результате применения рентгеноконтрастных препаратов показаны экстренные противоаллергические меры – антигистаминные средства, препараты кортикостероидов, внутривенное введение раствора тиосульфата натрия, при падении АД – противошоковая терапия.

*Магнитно-резонансные томографы *Низкопольные (напряженность магнитного поля 0, 02 -0, 35 Т) *Среднепольные (напряженность магнитного поля 0, 35 - 1, 0 Т) *Высокопольные (напряженность магнитного поля 1, 0 Т и выше – как правило, более 1, 5 Т)

*Магнитно-резонансные томографы *Магнит, создающий постоянное магнитное поле высокой напряженности (для создания эффекта ЯМР) *Радиочастотная катушка, генерирующая и принимающая радиочастотные импульсы (поверхностные и объемные) *Градиентная катушка (для управления магнитным полем в целях получения МР-срезов) *Блок обработки информации (компьютер)

* Магнитно-резонансные томографы Типы магнитов Преимущества 1) низкое энергопотребление 2) низкие эксплуатационные Постоянные расходы 3) малое поле неуверенного приема 1) низкая стоимость Резистивные 2) низкая масса (электромаг 3) возможность управления ниты) полем 1) высокая напряженность поля Сверхпрово 2) высокая однородность поля дящие 3) низкое энергопотребление Недостатки 1) ограниченная напряженность поля (до 0, 3 Т) 2) высокая масса 3) нет возможности управления полем 1) высокое энергопотребление 2) ограниченная напряженность поля (до 0, 2 Т) 3) большое поле неуверенного приема 1) высокая стоимость 2) высокие расходы 3) техническая сложность

*Т 1 и Т 2 -взвешенные изображения Т 1 -взвешенное изображение: ликвор гипоинтенсивный Т 2 -взвешенное изображение: ликвор гиперинтенсивный

*Контрастные вещества для МРТ *Парамагнетики – повышают интенсивность МР-сигнала за счет укорочения времени Т 1 -релаксации и являются «позитивными» агентами для контрастирования – внеклеточные (соединения ДТПА, ЭДТА и их производных – с Mn и Gd) – внутриклеточные (Mn-ДПДФ, Mn. Cl 2) – рецепторные *Суперпарамагнетики – снижают интенсивность МР-сигнала за счет удлинения времени Т 2 -релаксации и являются «негативными» агентами для контрастирования – комплексы и взвеси Fe 2 O 3

*Преимущества магнитнорезонансной томографии * Самая высокая разрешающая способность среди всех методов медицинской визуализации * * Отсутствие лучевой нагрузки * Дополнительные возможности (МР-ангиография, трехмерная реконструкция, МРТ с контрастированием и др.) Возможность получения первичных диагностических изображений в разных плоскостях (аксиальной, фронтальной, сагиттальной и др.)

*Недостатки магнитнорезонансной томографии *Низкая доступность, высокая стоимость *Длительное время МР-сканирования (сложность исследования подвижных структур) *Невозможность исследования пациентов с некоторыми металлоконструкциями (ферро- и парамагнитными) *Сложность оценки большого объема визуальной информации (граница нормы и патологии)

Одним из современных методов диагностирования различных заболеваний является компьютерная томография (КТ, Энгельс, Саратов). Компьютерная томография - метод послойного сканирования исследуемых участков организма. На основе данных о поглощении тканями рентгеновских лучей компьютер создает изображение необходимого органа в любой выбранной плоскости. Метод применяется для детального исследования внутренних органов, сосудов, костей и суставов.

КТ-миелография - метод, сочетающий возможности КТ и миелографии. Его относят к инвазивным методам получения изображений, так как необходимо введение контрастного вещества в субарахноидальное пространство. В отличие от рентгеновской миелографии при КТ -миелографии требуется меньшее количество контрастного вещества. В настоящее время КТ -миелографию используют в стационарных условиях, чтобы определять проходимость ликворных пространств спинного и головного мозга, окклюзирующие процессы, различные типы назальной ликвореи, диагностировать кистозные процессы интракраниальной и позвоночно-паравертебральной локализации.

Компьютерная ангиография по своей информативности приближается к обычной ангиографии и в отличие от обычной ангиографии осуществляется без сложных хирургических манипуляций, связанных с проведением внутрисосудистого катетера к исследуемому органу. Преимуществом КТангиографии является то, что она позволяет проводить исследование в амбулаторных условиях в течение 40 -50 минут, полностью исключает риск возникновения осложнений от хирургических манипуляций, уменьшает лучевую нагрузку на пациента и снижает стоимость исследования.

Высокое разрешение спиральной КТ позволяет проводить построение объёмных (3 D) моделей сосудистой системы. По мере совершенствования аппаратуры скорость исследования постоянно сокращается. Так, время регистрации данных при КТ ангиографии сосудов шеи и головного мозга на 6 -спиральном сканере занимает от 30 до 50 с, а на 16 -спиральном - 15 -20 с. В настоящее время это исследование, включая 3 Dобработку, проводят практически в реальном времени.

* Исследование органов брюшной полости (печени, желчного пузыря, поджелудочной железы) проводится натощак. * За полчаса до исследования проводится контрастирование петель тонкого кишечника для лучшего обзора головки поджелудочной железы и гепатобилиарной зоны (необходимо выпить от одного до трёх стаканов раствора контрастного вещества). * При исследовании органов малого таза необходимо сделать две очистительные клизмы: за 6 -8 часов и за 2 часа до исследования. Перед исследованием в течении часа пациенту необходимо выпить большое количество жидкости для заполнения мочевого пузыря. *Подготовка

*В ходе рентгеновской компьютерной томографии пациент подвергается воздействию рентгеновских лучей, как и при обычной рентгенографии, но суммарная доза облучения обычно выше. Поэтому, РКТ должна проводиться только по медицинским показаниям. Нежелательно проведение РКТ в период беременности и без особой необходимости маленьким детям. *Воздействие ионизирующего облучения

*Рентгеновские кабинеты различного назначения должны иметь обязательный набор передвижных и индивидуальных средств радиационной защиты, приведенных в приложении 8 Сан. Пи. Н 2. 6. 1. 1192 -03 «Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований» .

*Рентгеновские кабинеты должны располагаться централизовано на стыках стационара и поликлиники в медицинских учреждениях. Допускается размещение таких кабинетов в пристроях жилых домов и на цокольных этажах.

* Для защиты персонала используют следующие гигиенические требования: для мед. персонала средняя годовая эффективная доза 20 м 3 в(0, 02 зиверта) или эффективная доза за трудовой срок (50 лет) – 1 зиверт.

* Для практически здоровых людей годовая эффективная доза при проведении профилактических медицинских рентгенологических исследований не должна превышать 1 м 3 в (0, 001 зиверт)

Защита от рентгеновского излучения позволяет обезопасить человека только при использовании аппарата в медицинских учреждениях. На сегодняшний день имеется несколько видов защитных средств, которые делятся на группы: средства коллективной защиты, они имеют два подвида: стационарные и передвижные; средства от попадания прямых неиспользуемых лучей; приспособления для обслуживающего персонала; защитные средства, предназначенные для пациентов.

* Время пребывания в сфере источника рентгеновского излучения должно быть минимально. Расстояние от источника рентгеновских лучей. При диагностических исследованиях минимальное расстояние между фокусом рентгеновской трубки и исследуемым составляет 35 см (кожно-фокусное расстояние). Это расстояние обеспечивается автоматически конструкцией просвечивающего и съемочного устройства

* Стены и перегородки состоят из 2 -3 слоев шпаклевки, окрашены специальной медицинской краской. Полы так же выполнены послойно из специальных материалов.

* Потолки гидроизолируются, выкладываются в 2 -3 слоя из спец. материалов со свинцом. Окрашиваются медицинской краской. Достаточное освещение.

* Дверь в рентген-кабинете должна быть металлической с листом свинца. Цвет (как правило) белый или серый с обязательным знаком «опасность» . Рамы окон должны быть выполнены из тех же материалов.

* Для индивидуальной защиты используются: защитный фартук, воротник, жилет, юбка, очки, шапочка, перчатки с обязательным свинцовым покрытием.

* К передвижным средствам защиты относятся: малая и большая ширмы как для персонала так и для пациентов, защитный экран или штора, сделанные из металла или специальной ткани с листом свинца.

При эксплуатации приборов в рентгенкабинете все должно работать исправно, соответствовать регламентированным указаниям по использованию приборов. Обязательны маркировки используемых инструментов.

Однофотонная эмиссионная компьютерная томография особенно широко используется в кардиологической и неврологической практике. Метод основан на вращении вокруг тела пациента обычной гамма-камеры. Регистрация излучения в различных точках окружности позволяет реконструировать секционное изображение. *ОФЭКТ

ОФЭКТ применяется в кардиологии, неврологии, урологии, в пульмонологии, для диагностики опухолей головного мозга, при сцинтиграфии рака молочной железы, заболеваний печени и сцинтиграфии скелета. Данная технология позволяет формировать 3 D-изображения, в отличие от сцинтиграфии, использующей тот же принцип создания гамма-фотонов, но создающей лишь двухмерную проекцию.

В ОФЭКТ применяются радиофармпрепараты, меченные радиоизотопами, ядра которых при каждом акте радиоактивного распада испускают только один гамма-квант (фотон) (для сравнения, в ПЭТ используются радиоизотопы, испускающие позитроны)

*ПЭТ Позитронная эмиссионная томография основывается на использовании испускаемых радионуклидами позитронов. Позитроны, имея одинаковую массу с электронами, заряжены положительно. Испускаемый позитрон сразу же взаимодействует с ближайшим электроном, что приводит к возникновению двух гамма-фотонов, распространяющихся в противоположных направлениях. Эти фотоны регистрируются специальными детекторами. Информация затем передается на компьютер и преобразуется в цифровое изображение.

Позитроны возникают при позитронном бетараспаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием.

ПЭТ позволяет осуществлять количественную оценку концентрации радионуклидов и тем самым изучать метаболические процессы в тканях.

Выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

*

Сцинтиграфия - (от лат. scinti - сверкать и греч. grapho - изображать, писать) метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов (РФП) и получении двумерного изображения путём определения испускаемого ими излучения

Радиоактивные индикаторы нашли своё применение в медицине с 1911, их родоначальником стал Дьердя де Хевеш, за что получил Нобелевскую премию. С пятидесятых годов направление стало активно развиваться, в практику вошли радионуклиды, появилась возможность наблюдать их скопление в нужном органе, распределение по нёму. Во 2 половине XX века при развитии технологий создания крупных кристаллов был создан новый прибор – гамма-камера, использование которой позволило получать изображения – сцинтиграммы. Этот метод и получил название сцинтиграфии.

*Суть метода Данный метод диагностики заключается в следующем: пациенту вводят, чаще всего внутривенно, препарат, который состоит из молекулы-вектора и молекулы-маркера. Молекула-вектор обладает сродством к определенному органу или целой системе. Именно она отвечает за то, чтобы маркер сконцентрировался именно там, где необходимо. Молекула-маркер обладает способностью испускать γ-лучи, которые, в свою очередь, улавливаются сцинтиляционной камерой и трансформируются в читаемый результат.

*Получаемые изображения Статические - в результате получается плоское (двумерное) изображение. Таким методом чаще всего исследуют кости, щитовидную железу и т. д. Динамические - результат сложения нескольких статических, получения динамических кривых (например при исследовании функции почек, печени, желчного пузыря) ЭКГ-синхронизированное исследование - ЭКГсинхронизация позволяет в томографическом режиме визуализировать сократительную функцию сердца.

Иногда к Сцинтиграфии относят родственный метод однофотонной эмиссионной компьютерной томографии (ОФЕКТ), который позволяет получать томограммы (трёхмерные изображения). Чаще всего таким образом исследуют сердце (миокарда), головной мозг

*Ипользование метода Сцинтиграфия показана при подозрении на наличие какой-то патологии, при уже существующем и выявленном ранее заболевании, для уточнения степени повреждения органов, функциональной активности патологического очага и оценки эффективности проведённого лечения

*Объекты исследования железы внутренней секреции кроветворная система спинной и головной мозг (диагностика инфекционных заболеваний мозга, болезни Альцгеймера, болезни Паркинсона) лимфатическая система лёгкие сердечно-сосудистая система (исследование сократительной способности миокарда, обнаружение ишемических очагов, выявление тромбоэмболии лёгочной артерии) органы пищеварения органы выделительной системы костная система (диагностика переломов, воспалений, инфекций, опухолей костной ткани)

Изотопы специфичны для определенного органа, поэтому для выявления патологии различных органов используются разные радиофармакологические препараты. Для исследования сердца используется Таллий-201 , Технеций-99 m, щитовидной железы – Йод-123, легких – технеций-99 m, Йод-111, печени – Технеций-97 m, и так далее

*Критерии выбора РФП Основным критерием при выборе является соотношение диагностическая ценность/минимальная лучевая нагрузка, которое может проявляться в следующем: Препарат должен быстро достигать исследуемого органа, равномерно распределяться в нем и также быстро и полностью выводиться из организма. Период полураспада у радиоактивной части молекулы должен быть достаточно коротким, чтобы радионуклид не представлял вреда для здоровья пациента. Излучение, которое является характеристическим для данного препарата, должно быть удобно для регистрации. Радиофармацевтические препараты не должны содержать примесей, токсических для человека, и не должны генерировать продукты распада с длительным периодом разложения

*Исследования, требующие специальной подготовки 1. Функциональное исследование щитовидной железы с помощью 131 йодида натрия В течение 3 -х месяцев перед проведением исследования пациентам запрещается: проведение рентгеноконтрастного исследования; прием препаратов, содержащих йод; за 10 дней до исследования отмяются седативные препараты, содержащие йод в высоких концентрациях Больной направляется в отделение радиоизотопной диагностики утром натощак. Через 30 минут после приема радиоактивного йода больной может завтракать

2. Сцинтиграфия щитовидной железы с помощью 131 -йодида натрия Больной направляется в отделение утром натощак. Через 30 минут после приема радиоактивного йода больному дают обычный завтрак. Сцинтиграфию щитовидной железы проводят через 24 часа после приема препарата. 3. Сцинтиграфия миокарда с помощью 201 -таллия хлорида Проводится натощак. 4. Динамическая сцинтиграфия желчевыводящих протоков с хида Исследование проводится натощак. Медсестра стационара приносит в отделение радиоизотопной диагностики 2 сырых яйца. 5. Сцинтиграфия костной системы с пирофосфатом Больной в сопровождении медсестры направляется в отделение изотопной диагностики для проведения внутривенного введения препарата утром. Исследование проводится через 3 часа. Перед началом исследования больной должен опорожнить мочевой пузырь.

*Исследования, не требующие специальной подготовки Сцинтиграфия печени Радиометрическое исследование опухолей кожи. Ренография и сцинтиграфия почек Ангиография почек и брюшной аорты, сосудов шеи и головного мозга Сцинтиграфия поджелудочной железы. Сцинтиграфия легких. ОЦК (определение объема циркулирующей крови) Трансмиссионно-эмиссионное исследование сердца, легких и крупных сосудов Сцинтиграфия щитовидной железы с помощью пертехнетата Флебография Лимфография Определение фракции выброса

*Противопоказания Абсолютным противопоказанием является аллергия на вещества, входящие в состав используемого радиофармацевтического препарата. Относительное противопоказание – беременность. Исследование пациентки кормящей грудью допускается, только важно не возобновлять кормление раньше 24 часов после обследования, точнее после введения препарата

*Побочные эффекты Аллергические реакции на радиоактивные вещества Временное повышение или снижение артериального давления Частые позывы к мочеиспусканию

*Положительные моменты исследования Возможность определить не только внешний вид органа, но и нарушение функций, которое зачастую проявляется гораздо раньше, нежели органические поражения. При таком исследовании результат фиксируется не в виде статической двухмерной картинки, а в виде динамических кривых, томограмм или электрокардиограмм. Исходя из первого пункта, становится очевидным, что сцинтиграфия позволяет количественно оценить поражение органа или системы. Это метод практически не требует подготовки со стороны пациента. Зачастую рекомендуется лишь соблюдать определенную диету и прекратить прием лекарственных препаратов, которые могут мешать визуализации

*

Радиология интервенционная - раздел медицинской радиологии, разрабатывающий научные основы и клиническое применение лечебных и диагностических манипуляций, осуществляемых под контролем лучевого исследования. Формирование Р. и. стало возможным с внедрением в медицину электроники, автоматики, телевидения, вычислительной техники.

Оперативные вмешательства, выполняемые с помощью интервенцион ной радиологии, можно разделить на следующие группы: *восстановление просвета суженных трубчатых структур (артерий, желчевыводящих путей, различных отделов желудочно-кишечного тракта); *дренирование полостных образований во внутренних органах; *окклюзия просвета сосудов *Цели применения

Показания к интервенционным вмешательствам весьма широки, что связано с многообразием задач, которые могут быть решены с помощью методов интервенционной радиологии. Общими противопоказаниями являются тяжелое состояние больного, острые инфекционные болезни, психические расстройства, декомпенсация функций сердечнососудистой системы, печени, почек, при использовании йодсодержащих рентгеноконтрастных веществ - повышенная чувствительность к препаратам йода. *Показания

Развитие интервенционной радиолоии потребовало создания специализированного кабинета в составе отделения лучевой диагностики. Чаще всего это ангиографический кабинет для внутриполостных и внутрисосудистых исследований, обслуживаемый рентгенохирургической бригадой, и состав которой входят рентгенохирург, анестезиолог, специалист по ультразвуковой диагностике, операционная сестра, рентгенолаборант, санитарка, фотолаборант. Работники рентгенохирургической бригады должны владеть методами интенсивной терапии и реанимации.

Рентгеноэндоваскулярные вмешательства, получившие наибольшее признание, представляют собой внутрисосудистые диагностические и лечебные манипуляции, осуществляемые под рентгеновским контролем. Основными их видами являются рентгеноэндоваскулярная дилатация, или ангиопластика, рентгеноэндоваскулярное протезирование и рентгеноэндоваскулярная окклюзия

Экстравазальные интервенционные вмешательства включают эндобронхиальные, эндобилиарные, эндоэзофагальные, эндоуринальные и другие манипуляции. К рентгеноэндобронхиальным вмешательствам относят катетеризацию бронхиального дерева, выполняемую под контролем рентгенотелевизионного просвечивания, с целью получения материала для морфологических исследований из недоступных для бронхоскопа участков. При прогрессирующих стриктурах трахеи, при размягчении хрящей трахеи и бронхов осуществляют эндопротезирование использованием временных и постоянных металлических и нитиноловых протезов.


* В 1986 году Рентген открыл новый вид излучения, и уже в этот же год талантливым ученым удалось сделать рентгеноконтрастными сосуды различных органов трупа. Однако ограниченные технические возможности в течение некоторого времени препятствовали развитию ангиографии сосудов. * В настоящее время ангиография сосудов – это достаточно новый, но интенсивно развивающийся высокотехнологический метод диагностики разнообразных заболеваний сосудов и органов человека.

* На стандартных рентгеновских снимках невозможно увидеть ни артерии, ни вены, ни лимфатические сосуды, ни тем более капилляры, поскольку они поглощают излучение, так же, как и окружающие их мягкие ткани. Поэтому для того, чтобы можно было рассмотреть сосуды и оценить их состояние, применяются специальные методы ангиографии с введением особых рентгеноконтрастных препаратов.

В зависимости от локализации пораженной вены различают несколько видов ангиографии: 1. Церебральная ангиография – исследование сосудов головного мозга. 2. Грудная аортография – исследование аорты и ее ветвей. 3. Ангиопульмонография – изображение легочных сосудов. 4. Брюшная аортография – исследование аорты брюшного отдела. 5. Почечная артериография - выявление опухолей, травм почек и МКБ. 6. Периферическая артериография – оценка состояния артерий конечностей при травмах и окклюзионных заболеваниях. 7. Портография - исследование воротной вены печени. 8. Флебография – исследование сосудов конечностей для определения характера венозного кровотока. 9. Флуоресцентная ангиография – исследование сосудов, применяемое в офтальмологии. *Виды ангиографии

Ангиография применяется для выявления патологий кровеносных сосудов нижних конечностей, в частности стеноз (сужение) или закупорку (окклюзию) артерий, вен и лимфатических путей. Данный метод применяется для: * выявления атеросклеротических изменений в кровеносных путях, * диагностики заболеваний сердца, * оценки функционирования почек; * выявления опухолей, кист, аневризм, тромбов, артериовенозных шунтов; * диагностики болезней сетчатки глаз; * предоперационного исследования перед хирургией на открытом мозге ил сердце. *Показания к исследованию

Метод противопоказан при: * венографии тромбофлебита; * острых инфекционных и воспалительных заболеваниях; * психических заболеваниях; * аллергических реакциях на йодсодержащие препараты или контрастное вещество; * выраженной почечной, печеночной и сердечной недостаточности; * тяжелом состоянии пациента; * дисфункции щитовидной железы; * венерических заболеваниях. Метод противопоказан больным с нарушениями свертываемости крови, а также беременным женщинам из-за негативного воздействия ионизирующей радиации на плод. *Противопоказания

1. Ангиография сосудов является инвазивной процедурой, которая требует врачебный контроль состояния пациента до и после диагностической манипуляции. Из-за этих особенностей, требуется госпитализация больного в стационар и проведение лабораторных исследований: общий анализ крови, мочи, биохимический анализ крови, определение группы крови и резус фактора и ряда других тестов по показаниям. Человеку рекомендуется прекратить принимать ряд препаратов, которые влияют на свертывающую систему крови (например, аспирин) за несколько дней до осуществления процедуры. *Подготовка к исследованию

2. Пациенту рекомендуется воздержаться от приема пищи за 6 -8 часов до начала диагностической процедуры. 3. Сама процедура проводится с применением местных анестетиков, также человеку накануне старта теста обычно назначают седативные (успокоительные) препараты. 4. Перед тем, как провести ангиографию, каждому пациенту делают пробу на аллергическую реакцию к препаратам, используемым при контрастировании. *Подготовка к исследованию

* После предварительной обработки растворами антисептиков по местным обезболиванием выполняют небольшой разрез кожи и находят необходимую артерию. Выполняют ее прокол специальной иглой и через эту иглу вводят металлический проводник до нужного уровня. По этому проводнику до заданной точки вводят специальный катетер, и проводник вместе с иглой удаляют. Все манипуляции, происходящие внутри сосуда, происходят строго под контролем рентгенотелевидения. Через катетер вводят в сосуд рентгеноконтрастное вещество и в этот же момент проводят серию рентгеновских снимков, при необходимости изменяя положение пациента. *Методика ангиографии

*После окончания процедуры катетер удаляют, а на область прокола накладывают очень тугую стерильную повязку. Введенное в сосуд вещество покидает организм через почки в течение суток. А сама процедура продолжается около 40 минут. *Методика ангиографии

* Состояние пациента после процедуры * Больному в течение суток показан постельный режим. За самочувствием пациента следит лечащий доктор, который выполняет измерение температуры тела и осмотр области инвазивного вмешательства. На другой день повязку снимают и при удовлетворительном состоянии человека и отсутствии кроизлияния в районе прокола его отпускают домой. * Для абсолютного большинства людей ангиографическое исследование не несет никакого риска. По имеющимся данным, угроза осложнений при осуществлении ангиографии не превышает 5%.

*Осложнения Среди осложнений наиболее часто встречаются следующие: * Аллергические реакции на рентгенконтрастные вещества (в частности йодсодержащие, поскольку они используются чаще всего) * Болезненные ощущения, отечности и гематомы на месте введения катетера * Кровотечение после пункции * Нарушение функционирования почек вплоть до развития почечной недостаточности * Травма сосуда или тканей сердца * Нарушение сердечного ритма * Развитие сердечнососудистой недостаточности * Инфаркт или инсульт

Современная лучевая диагностика является одной из наиболее динамично развивающихся областей клинической медицины. В значительной степени это связано с продолжающимся прогрессом в области физики и компьютерных технологий. Авангардом развития лучевой диагностики являются методы томографии: рентгеновской компьютерной (РКТ) и магнитно-резонансной (МРТ), позволяющие неинвазивно оценить характер патологического процесса в теле человека.

В настоящее время стандартом РКТ является обследование с помощью многосрезового томографа с возможностью получения от 4 до 64 срезов с временным разрешением 0,1-0,5 с. (минимально доступная длительность одного оборота рентгеновской трубки составляет 0,3 с.).

Таким образом, длительность томографии всего тела с толщиной среза менее 1 мм составляет около 10-15 секунд, а результатом исследования являются от нескольких сотен до нескольких тысяч изображений. Фактически, современная мультиспиральная компьютерная томография (МСКТ) является методикой объемного исследования всего тела человека, так как полученные аксиальные томограммы составляют трёхмерный массив данных, позволяющий выполнить любые реконструкции изображений, в том числе мультипланарные, 3D-реформации, виртуальные эндоскопии.

Применение контрастных препаратов при КТ позволяет повысить точность диагностики, а во многих случаях является обязательным компонентом исследования. Для увеличения контрастности тканей применяют водорастворимые йодсодержащие контрастные вещества, которые вводятся внутривенно (обычно в локтевую вену) с помощью автоматического инъектора (болюсно, т. е. в значительном объеме и с высокой скоростью).

Ионные йод-содержащие контрастные препараты обладают целым рядом недостатков, связанных с высокой частотой развития побочных реакций при быстром внутривенном введении. Появление неионных низкоосмолярных препаратов (Омнипак, Ультравист) сопровождалось уменьшением частоты тяжелых побочных реакций в 5-7 раз, что превращает МСКТ с внутривенным контрастированием в доступную, амбулаторную, рутинную методику обследования.

Подавляющее большинство МСКТ исследований может быть стандартизовано и проводиться рентген-лаборантом, т. е. МСКТ является одним из наименее оператор-зависимых методов лучевой диагностики. Соответственно, МСКТ исследование, проведенное методически правильно и хранящееся в цифровом виде, может обрабатываться и интерпретироваться любым специалистом или консультантом без потери первичной диагностической информации.

Длительность исследования редко превышает 5-7 минут (является несомненным преимуществом МСКТ) и может проводиться у пациентов, находящихся в тяжелом состоянии. Однако, время обработки и анализа результатов МСКТ занимает существенно больше времени, так как врач-рентгенолог обязан изучить и описать 500-2000 первичных изображений (до и после введения контрастного препарата), реконструкций, реформаций.

МСКТ обеспечила переход в лучевой диагностике от принципа «от простого к сложному» к принципу «наибольшей информативности», заменив целый ряд ранее использовавшихся методик. Несмотря на высокую стоимость, присущую МСКТ представляет собой оптимальное соотношение стоимость/эффективность и высокая клиническая значимость, что определяет продолжающееся бурное развитие и распространение метода.

Услуги отделения

Кабинет РКТ предлагает следующий спектр исследований:

  • Мультиспиральная компьютерная томография (МСКТ) головного мозга.
  • МСКТ органов шеи.
  • МСКТ гортани в 2 этапа (до и во время фонации).
  • МСКТ придаточных пазух носа в 2-х проекциях.
  • МСКТ височных костей.
  • МСКТ органов грудной клетки.
  • МСКТ брюшной полости и забрюшинного пространства (печень, селезенка, поджелудочная железа, надпочечники, почки и мочевыделительная система).
  • МСКТ малого таза.
  • МСКТ сегмента скелета (в т. ч. плечевых, коленных, тазобедренных суставов, кистей рук, стоп), лицевого черепа (орбиты).
  • МСКТ сегментов позвоночного столба (шейного, грудного, поясничного отделов).
  • МСКТ дисков поясничного отдела позвоночного столба (L3-S1).
  • МСКТ остеоденситометрия.
  • МСКТ виртуальная колоноскопия.
  • МСКТ планирование дентальной имплантации.
  • МСКТ-ангиография (грудной, брюшной аорты и её ветвей, лёгочных артерий, интракраниальных артерий, артерий шеи, верхних и нижних конечностей).
  • исследования с внутривенным контрастированием (болюсные, многофазные).
  • 3D-, мультипланарные реконструкции.
  • Запись исследования на CD/DVD.

При проведении исследований с внутривенным контрастированием используется неионный контрастный препарат «Омнипак» (производства Amersham Health, Ирландия).
Результаты исследований обрабатываются на рабочей станции, с помощью мультипланарной, 3D-реконструкции, виртуальной эндоскопии.
Пациенты получают результаты исследования на CD или DVD диске. При наличии результатов предыдущих исследований проводится сравнительный анализ (в т. ч. цифровой), оценка динамики изменений. Врач оформляет заключение, при необходимости проводит консультацию по результатам, дает рекомендации о дальнейших исследованиях.

Оборудование

Мультиспиральный компьютерный томограф BrightSpeed 16 Elite - разработка компании GE, сочетающая в себе компактность конструкции и самые современные технологии.
Компьютерный томограф BrightSpeed позволяет получать изображения до 16 срезов с высоким разрешением за один оборот трубки. Минимальная толщина среза 0,625 мм.

Рентген

Рентгеновское отделение оснащено новейшей цифровой аппаратурой, позволяющей при высоком качестве исследования снижать дозу рентгеновского облучения.
Результаты обследования выдаются пациентам на руки на лазерной плёнке, а также CD/DVD дисках.
Рентгеновское обследование позволяет выявлять туберкулез, воспалительные заболевания, онкопатологию.

Услуги отделения

В отделении проводятся все виды рентгеновского обследования:

  • рентгеноскопия грудной клетки, желудка, толстой кишки;
  • рентгенография грудной клетки, костей, позвоночника с функциональными пробами, стоп на плоскостопие, исследование почек и мочевыделительных путей;
  • томография грудной клетки, гортани, а также костей;
  • снимки зубов и ортопонтамограммы;
  • исследование молочных желез, стандартная маммография, прицельная, прицельная с увеличением - при наличии микрокальцинатов;
  • пневмокистография для исследования внутренней стенки крупной кисты;
  • контрастное исследование млечных протоков - дуктография;
  • томосинтез молочных желёз.

В отделении также проводится рентгеновская денситометрия:

  • поясничного отдела позвоночника в прямой проекции;
  • поясничного отдела позвоночника в прямой и боковой проекции с проведением морфометрического анализа;
  • проксимального отдела бедренной кости;
  • проксимального отлела бедренной кости с эндопротезом;
  • костей предплечия;
  • кисти;
  • всего тела.

ГУ «Уфимский НИИ глазных болезней» АН РБ, г. Уфа

Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике — эре рентгенологии. Современные методы лучевой диагностики подразделяются на рентгенологический, радионуклидный, магнитно-резонансный, ультразвуковой.
Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования.
Простой и необременительной для пациента является рентгенография. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов. Показания к рентгенографии должны быть обоснованы, так как рентгеновское излучение сопряжено с лучевой нагрузкой.
Компьютерная томография (КТ) — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения. Компьютерный томограф способен различать ткани, отличающиеся друг от друга по плотности всего на половину процента. Поэтому компьютерный томограф дает примерно в 1000 раз больше информации, чем обычный рентгеновский снимок. При спиральной КТ излучатель движется по спирали по отношению к телу пациента и захватывает за несколько секунд определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями. Спиральная КТ инициировала создание новых перспективных способов визуализации — компьютерной ангиографии, трехмерного (объемного) изображения органов, и, наконец, так называемой виртуальной эндоскопии, которая стала венцом современной медицинской визуализации.
Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Индикаторы — радиофармацевтические препараты (РФП) — вводят в организм больного, а затем с помощью приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. Современными методами радионуклидной диагностики являются сцинтиграфия, однофотонная эмиссионная томография (ОФЭТ) и позитронная эмиссионная томография (ПЭТ), радиография и радиометрия. В основе методов лежит введение РФП, которые испускают позитроны или фотоны. Эти вещества, введенные в человеческий организм, скапливаются в областях увеличенного метаболизма и повышенных кровяных потоков.
Ультразвуковой метод — способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения. Он может зарегистрировать даже незначительные изменения плотности биологических сред. Благодаря этому ультразвуковой метод стал одним из наиболее популярных и доступных исследований в клинической медицине. Наибольшее распространение нашли три метода: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов. При одномерном А-методе отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствует расположению отражающих ультразвук элементов объекта. Ультразвуковое сканирование (В-метод) позволяет получать двухмерное изображение органов. Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь, периметр, поверхность и объем) исследуемого органа. Допплерография позволяет неинвазивно, безболезненно и информативно регистрировать и оценивать кровоток органа. Доказана высокая информативность цветного допплеровского картирования, которое используют в клинике для изучения формы, контуров и просвета кровеносных сосудов.
Магнитно-резонансная томография (МРТ) — исключительно ценный метод исследования. Вместо ионизирующего излучения используется магнитное поле и радиочастотные импульсы. Принцип действия основан на феномене ядерно-магнитного резонанса. Манипулируя градиентными катушками, создающими небольшие дополнительные поля, можно записывать сигналы от тонкого слоя тканей (до 1 мм) и легко изменять направление среза — поперечный, фронтальный и сагиттальный, получая трехмерное изображение. К основным достоинствам метода МРТ относятся: отсутствие лучевой нагрузки, возможность получать изображение в любой плоскости и выполнять трехмерные (пространственные) реконструкции, отсутствие артефактов от костных структур, высокая разрешающая способность визуализации различных тканей, практически полная безопасность метода. Противопоказанием к проведению МРТ является наличие в организме металлических инородных тел, клаустрофобия, судорожный синдром, тяжелое состояние пациента, беременность и лактация.
Развитие лучевой диагностики играет большую роль и в практической офтальмологии. Можно утверждать, что орган зрения — идеальный объект для КТ ввиду выраженных различий в поглощении излучения в тканях глаза, мышцах, нервах, сосудах и ретробульбарной жировой клетчатке. КТ позволяет лучшим образом изучить костные стенки глазниц, выявить патологические изменения в них. КТ применяют при подозрении на опухоль глазницы, при экзофтальме неясного генеза, травмах, инородных телах глазницы. МРТ дает возможность исследовать глазницу в разных проекциях, позволяет лучше разобраться в структуре новообразований внутри глазницы. Но эта методика противопоказана при попадании металлических инородных тел в глаз.
Основными показаниями к проведению УЗИ являются: повреждения глазного яблока, резкое снижение прозрачности светопроводящих структур, отслойка сосудистой оболочки и сетчатки, наличие инородных внутриглазных тел, опухоли, повреждения зрительного нерва, наличие участков обызвествлений в оболочках глаза и области зрительного нерва, динамическое наблюдение за проводимым лечением, изучение характеристик кровотока в сосудах орбиты, исследования перед МРТ или КТ.
Рентгенографию используют как скрининговый метод при травмах глазницы и поражениях ее костных стенок для выявления плотных инородных тел и определения их локализации, проводят диагностику заболеваний слезных путей. Большое значение имеет метод рентгенологического исследования смежных с глазницей придаточных пазух носа.
Так, в Уфимском научно-исследовательском институте глазных болезней за 2010 год проведено 3116 рентгеновских исследований, в т. ч. пациентам из поликлиники — 935 (34 %), из стационара — 1059 (30 %), из кабинета неотложной помощи — 1122 (36 %). Сделано 699 (22,4 %) специальных исследований, к которым относятся исследование слезоотводящих путей с контрастированием (321), бесскелетная рентгенография (334), выявление локализации инородных тел в орбите (39). Рентгенография органов грудной клетки при воспалительных заболеваниях орбиты и глазного яблока составила 18,3 % (213), а придаточных пазух носа — 36,3 % (1132).

Выводы . Лучевая диагностика является необходимой составной частью клинического обследования больных в офтальмологических клиниках. Многие достижения традиционного рентгенологического исследования все больше отступают перед совершенствующимися возможностями КТ, УЗИ, МРТ.

Лучевая диагностика и лучевая терапия составные части медицинской радиологии (так принято называть эту дисциплину за рубежом).

Лучевая диагностика - практическая дисциплина, изучающая применение различных излучений с целью распознавания многочисленных болезней, для изучения морфологии и функции нормальных и патологических органов и систем человека. В состав лучевой диагностики входят: рентгенология, включая компьютерную томографию (КТ); радионуклидная диагностика, ультразвуковая диагностика, магнитно-резонансная томография (МРТ), медицинская термография и интервенционная радиология, связанная с выполнением диагностических и лечебных процедур под контролем лучевых методов исследования.

Роль лучевой диагностики вообще и в стоматологии в частности, нельзя переоценить. Лучевая диагностика характеризуется рядом особенностей. Во-первых, она имеет массовое применение как при соматических заболеваниях, так и в стоматологии. В РФ ежегодно выполняется более 115 миллионов рентгенологических исследований, более 70 миллионов ультразвуковых и более 3-х миллионов радионуклидных исследований. Во-вторых, лучевая диагностика обладает информативностью. С ее помощью устанавливается или дополняется 70-80% клинических диагнозов. Лучевая диагностика используется при 2000 различных заболеваниях. Дентальные исследования составляют 21% от всех рентгенологических исследований в РФ и почти 31% по Омской области. Другой особенностью является то, что аппаратура, используемая при лучевой диагностике, дорогостоящая, особенно компьютерные и магнитно-резонансные томографы. Их стоимость превышает 1 - 2 млн. долларов. За рубежом из-за высокой цены аппаратуры лучевая диагностика (радиология) является самой финансовоемкой отраслью медицины. Особенностью лучевой диагностики является еще и то, что рентгенология и радионуклидная диагностика, не говоря уже о лучевой терапии, обладают радиационной опасностью для персонала этих служб и пациентов. Данное обстоятельство обязывает врачей всех специальностей, в том числе стоматологов учитывать этот факт при назначении рентгенорадиологических исследований.

Лучевая терапия практическая дисциплина, изучающая применение ионизирующего излучения с лечебной целью. В настоящее время лучевая терапия располагает большим арсеналом источникров квантового и корпускулярного излучений, используемых в онкологии и при лечении неопухолевых заболеваний.

В настоящее время без лучевой диагностики и лучевой терапии не могут обойтись никакие медицинские дисциплины. Практически нет такой клинической специальности, в которой лучевая диагностика и лучевая терапия не являлись бы сопряженными с диагностикой и лечением различных заболеваний.

Стоматология одна из тех клинческих дисциплин, где рентгенологическое исследование занимает основное место в диагностике заболеваний зубочелюстной системы.

Лучевая диагностика использует 5 видов излучений, которые по способности вызывать ионизацию среды относятся к ионизирующим, или к неионизирующим излучениям. К ионизирующим излучениям относятся рентгеновское и радионуклидное излучения. К числу неионизирующих излучений относятся ультразвуковое, магнитное, радиочастотное, инфракрасное излучения. Однако, при использовании данных излучений могут возникать единичные акты ионизации в атомах и молекулах, которые однако не вызывают никаких нарушений в органах и тканях человека, не являются доминирующими в процессе взаимодействия излучения с веществом.

Основные физические характеристики излучений

Рентгеновское излучение является электромагнитным колебанием, искусственно создаваемое в специальных трубках рентгеновских аппаратов. Это излучение было открыто Вильгельмом Конрадом Рентгеном в ноябре 1895 года. Рентгеновские лучи относятся к невидимому спектру электромагнитных волн с длиной волны от 15 до 0,03 ангстрем. Энергия квантов в зависимости от мощности аппаратуры колеблется от 10 до 300 и более Кэв. Скорость распространения квантов рентгеновского излучения 300 000 км\сек.

Рентгеновские лучи обладают определенными свойствами, которые обуславливают применение их в медицине для диагностики и лечения различных заболеваний. Первое свойство - проникающая способность, способность проникать сквозь твердые и непрозрачные тела. Второе свойство - их поглощение в тканях и органах, которое зависит от удельного веса и объема тканей. Чем плотнее и объемнее ткань, тем большее поглощение лучей. Так, удельный вес воздуха равен 0,001, жира 0,9, мягких тканей 1,0, костной ткани - 1,9. Естественно, в костях будет наибольшее поглощение рентгеновского излучения. Третье свойство рентгеновых лучей - способность их вызывать свечение флюоресцирующих веществ, используемое при проведении просвечивания за экраном рентгенодиагностического аппарата. Четвертое свойство - фотохимическое, благодаря чему на рентгеновской фотопленке получается изображение. Последнее, пятое свойство - биологическое действие рентгеновых лучей на организм человека, чему будет посвящена отдельная лекция.

Рентгенологические методы исследования выполняются с помощью рентгеновского аппарата, в устройство которого входит 5 основных частей:

  • - рентгеновский излучатель (рентгеновская трубка с системой охлаждения);
  • - питающее устройство (трансформатор с выпрямителем электрического тока);
  • - приемник излучения (флюоресцирующий экран, кассеты с пленкой, полупроводиниковые датчики);
  • - штативное устройство и стол для укладки пациента;
  • - пульт управления.

Основной частью любого рентгенодиагностического аппарата является рентгеновская трубка, которая состоит из двух электродов: катода и анода. На катод подается постоянный электрический ток, который накаливает нить катода. При подаче высокого напряжения на анод электроны в результате разности потенциалов с большой кинетической энергией летят с катода и тормозятся на аноде. При торможении электронов и происходит образование рентгеновских - тормозных лучей, выходящих под определенным углом из рентгеновской трубки. Современные рентгеновские трубки имеют вращающийся анод, скорость которого достигает 3000 оборотов в минуту, что значительно снижает разогрев анода и повышает мощность и срок службы трубки.

Рентгенологический метод в стоматологии стал применяться вскоре после открытия рентгеновых лучей. Более того, считается, что первый рентгеновский снимок в России (в г. Риге) запечатлел челюсти рыбы пилы в 1896 году. В январе 1901 года появилась статья о роли рентгенографии в зубоврачебной практике. Вообще то стоматологическая рентгенология является одной из наиболее ранних разделов медицинской рентгенологии. Она стала развиваться в России, когда появились первые рентгеновские кабинеты. Первый специализированный рентгеновский кабинет при стоматологическом институте в Ленинграде был открыт в 1921 году. В Омске рентгеновские кабинеты общего назначения (где выполнялись и снимки зубов) открылись в 1924 году.

Рентгеновский метод включает следующие методики: рентгеноскопию, то есть получение изображения на флюоресцирующем экране; рентгенографию - получение изображения на рентгеновской пленке, помещенной в рентгенопрозрачную кассету, где она защищена от обычного света. Эти методики относятся к основным. Дополнительные включают: томографию, флюорографию, рентгеноденситометрию и др.

Томография - получение послойного изображения на рентгеновской пленке. Флюорография - это получение рентгеновского изображения меньшего размера (72×72 мм или 110×110 мм) в результате фотографического переноса изображения с флюоресцирующего экрана.

Рентгеновский метод включает и специальные, рентгеноконтрастные исследования. При проведении этих исследований используются специальные приемы, приспособления для получения рентгеновского изображения, а рентгеноконтрастные они именуются потому, что при исследовании применяются различные контрастные вещества, задерживающие рентгеновские лучи. К контрастным методикам относятся: ангио-, лимфо-, уро-, холецистография.

К рентгеновскому методу относится и компьютерная томография (КТ, РКТ), которая была разработана английским инженером Г.Хаунсфильдом в 1972 году. За это открытие он и другой ученый - А.Кормак получили в 1979 году нобелевскую премию. Компьютерные томографы в настоящее время имеются и в Омске: в Диагностическом центре, Областной клинической больнице, Иртышкой центральной бассейновой клинической больнице. Принцип РКТ основан на послойном исследовании органов и тканей тонким импульсным пучком рентгеновского излучения в поперечном сечении с последующей компьютерной обработкой тонких различий поглощения рентгеновских лучей и вторичным получением томографического изображения исследуемого объекта на мониторе или пленке. Современные рентгеновские компьютерные томографы состоят из 4 основных частей: 1- сканирующая система (рентгеновская трубка и детекторы); 2 - высоковольтный генератор - источник питания на 140 Кв и силой тока до 200 мА; 3 - пульт управления (клавиатура управления, монитор); 4 - компьютерная система, предназначенной для предварительной обработки, поступающей от детекторов информации и получения изображения с оценкой плотности объекта. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием прежде всего большей чувствиетльностью. Она позволяет отдифференцировать отдельные ткани друг от друга, отличающиеся по плотности в пределах 1 - 2% и даже в 0,5%. При рентгенографии этот показатель составляет 10 - 20%. КТ дает точную количественную информацию о размерах плотности нормальных и патологических тканей. При использовании контрастных веществ, методом так называемого внутривенного контрастного усиления повышается возможность более точного выявления патологических образований, проводить дифференциальную диагностику.

В последние годы появилась новая рентгенологическая система получения дигитального (цифрового) изображения. Каждая дигитальная картинка сотоит из множества отдельных точек, которым соответствует числовая интенсивность свечения. Степень яркости точек улавливается в специальном приборе - аналого-цифровом преобразователе (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр, то есть происходит цифровое кодирование сигналов. Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходимо цифро-аналоговый преобразователь (ЦАП), где цифровой образ трансформируется в аналоговое, видимое изображение. Дигитальная рентгенография постепенно будет вытеснять обычную пленочную рентгенографию, так как она отличается быстрым получением изображения, не требует фотохимической обработки пленки, обладает большей разрешающей возможностью, позволяет проводить математическую обработку изображения, архивировать на магнитные носители информации, дает значительно меньшую лучевую нагрузку на пациента (приблизительно в 10 раз), увеличивает пропускную способность кабинета.

Второй метод лучевой диагностики - радионуклидная диагностика. В качестве источников излучения применяются различные радиоактивные изотопы, радионуклиды.

Естественную радиоактивность открыл в 1896 году А.Беккерель, а искусственную в 1934 году Ирен и Жолио Кюри. Наиболее часто в радионуклидной диагностике используются радионуклиды (РН) гамма-излучатели и радиофармпрепараты (РФП) с гамма-излучателями. Радионуклид - изотоп, физические свойства которого определяют пригодность его к радиодиагностическим исследованиям. РФП называются диагностические и лечебные средства на основе радиоактивных нуклидов - вещества неорганической или органической природы, в структуре которых содержится радиоактивный элемент.

В стоматтологической практике и вообще в радионуклидной диагностике широкое применение имеют следующие радионуклиды: Тс 99 m , In- 113 m , I- 125 , Xe- 133 , реже I- 131 , Hg- 197 . Используемые для радионуклидной диагностики РФП по их поведению в организме разделяются условно на 3 группы: органотропные, тропные к патологическому очагу и без выраженной селективности, тропности. Тропность РФП бывает направленной, когда препарат включается в специфический обмен клеток определённого органа, в котором происходит его накопление, и косвенной, когда в органе происходит временная концентрация РФП по пути его прохождения или выведения из организма. Кроме того, выделяется и вторичная селективность, когда препарат, не обладая способностью к накоплению, вызывает в организме химические превращения, которые обусловливают возникновение новых соединений, уже накапливаемые в определённых органах или тканях. Самым распространённым РН в настоящее время является Тс 99 m , который является дочерним нуклидом радиоактивного молибдена Мо 99 . Тс 99 m , образуется в генераторе, где Мо- 99 распадается, путём бета-распада, с образованием долгоживущего Тс- 99 m . Последний при распаде испускает гамма-кванты с энергией 140 кэв (наиболее технически удобная энергия). Период полураспада Тс 99 m составляет 6 часов, что достаточно для всех радионуклидных исследований. Из крови он выводится с мочой (30 % в течении 2 час), накапливается в костях. Приготовление РФП на основе метки Тс 99 m осуществляется непосредственно в лаборатории с помощью набора специальных реагентов. Реагенты в соответствии с прилагаемой к наборам инструкцией, определённым образом перемешиваются с элюатом (раствором) технеция и в течение нескольких минут происходит образование РФП. Растворы РФП являются стерильными и апирогенными, и могут вводиться внутривенно. Многочисленные методики радионуклидной диагностики подразделяются на 2 группы в зависимости от того, вводится ли РФП в организм пациента или используется для исследования изолированных проб биосред (плазмы крови, мочи и кусочки ткани). В первом случае методики обьединяются в группу исследований in vivo, во-втором случае - in vitro. Оба способа имеют принципиальные различия в показаниях, в технике выполнения и в получаемых результатах. В клинической практике чаще всего используются комплексные исследования. Радионуклидные исследования in vitro используются для определения в сыворотке крови человека концентрации различных биологически активных соединений, количество которых в настоящее время достигает более 400 (гормоны, лекарственные вещества, ферменты, витамины). Они применяются для диагностики и оценки патологии репродуктивной, эндокринной, гемопоэтической и иммунологической систем организма. Большая часть современных наборов реагентов основана на радиоиммунологическом анализе (РИА), который был впервые предложен Р. Ялоу в 1959 г., за что автору была присуждена Нобелевская премия в 1977 г.

В последнее время наряду с РИА развивается новая методика радиорецепторного анализа (РРА). РРА также основан на принципе конкурентного равновесия меченного лиганда (меченый антиген) и исследуемого вещества сыворотки, но не с антителами, а с рецепторными связями клеточной мембраны. РРА отличается от РИА более коротким сроком постановки методики и ещё большей специфичностью.

Основными принципами радионуклидных исследований in vivo являются:

1.Изучение особенностей распределения в органах и тканях введенного РФП;

2.Определение динамики пассажирования РФП у пациента. Методики основанные на первом принципе дают характеристику анатомо-топографического состояния органа или системы и называются статическими радионуклидными исследованаями. Методики, основанные на втором принципе, позволяют оценить состояние функций исследуемого органа или системы и называются динамическами радионуклидными исследованиями.

Сушествуют несколько методик измерения радиоактивности организма или его частей после введения РФП.

Радиометрия. Эта методика измерения интенсивности потока ионизирующего излучения в единицу времени, выражающаяся в условных единицах-импульсах в секунду или минуту (имп/сек). Для измерения используют радиометрическую аппаратуру (радиометры, комплексы). Эта методика используется при исследовании накопления Р 32 в тканях кожи, при исследовании щитовидной железы, для изучения метаболизма белков, железа, витаминов в организме.

Радиография - метод непрерывной или дискретной регистрации процессов накопления, перераспределения и выведения РФП из организма или отдельных органов. Для этих целей применяют радиографы, в которых измеритель скорости счета соединен с самописцем, вычерчивающим кривую. В составе радиографа может быть один или несколько детекторов, каждый из которых ведет измерение независимо друг от друга. Если клиническая радиометрия предназначена для однократного или нескольких повторных измерений радиоактивности организма или его частей, то с помощью радиографии можно проследить динамику накопления и его выведения. Типичным примером радиографии является исследование накопления и выведения РФП из легких (ксенон), из почек, из печени. Радиографическая функция в современных аппаратах совмещена в гамма-камере с визуализацией органов.

Радионуклидная визуализация. Методика создания картины пространственного распределения в органах РФП, введенного в организм. Радионуклидная визуализация в настоящее время включает в себя следующие виды:

  • а) сканирование,
  • б) сцинтиграфию с использованием гамма-камеры,
  • в) однофотонную и двухфотонную позитронкую эмиссионную томографию.

Сканирование-метод визуализации органов и тканей посредотвом движущегося над телом сцинтилляционного детектора. Прибор, проводящий исследование называется сканер. Главный недостаток - большая продолжительность исследования.

Сцинтиграфия-получение изображения органов и тканей посредством регистрации на гамма-камере излучений, исходяших от радионуклидов, распределённых в органах и тканях и в организме в целом. Сцинтиграфия в настоящее время является основным методом радионуклидной визуализации в клинике. Он позволяет изучить быстро протекающие процессы распределения вводимых в организм радиоактивных соединений.

Однофотонная эмисионная томография (ОФЭТ). При ОФЭТ используются такие же РФП, что и при сцинтиграфии. В этом аппарате детекторы расположены в ротационной томокамере, которая вращается вокруг пациента, давая возможность после компьютерной обработки, получить изображение распределения радионуклидов в различных слоях тела в пространстве и во времени.

Двухфотонная эмииссионная томография (ДФЭТ). Для ДФЭТ в организм человека вводят позитрон излучающий радионуклид (С 11 , N 13 , О 15 , F 18). Позитроны, испускaeмыe этими нуклидами, аннигилируют вблизи ядер атомов с электронами. При аннигиляции пара позитрон-электрон исчезает, образуя два гамма-кванта с энергией 511 кэв. Эти два кванта, разлетающиеся в строго противоположном направлении регистрируются двумя также противоположно расположенными детекторами.

Компьютерная обработка сигналов позволяет получить объемное и цветное изображение объекта исследования. Пространственное разрешение ДФЭТ хуже, чем на рентгеновских компьютерных и магнитно-резонансных томографах, но чувствительность метода фантастическая. ДФЭТ позволяет констатировать изменение расхода глюкозы, меченного С 11 в «глазном центре» головного мозга, при открывании глаз, удается выявить изменения при мыслительном процессе определить т.н. «душу», расположенную, как полагают некоторые ученые, в головном мозге. Недостатком этого метода является то, что использование его возможнно только при наличии циклотрона, радиохимической лаборатории для получения короткоживущих нуклидов, позитронного томографа и компьютера для обработки информации, что очень дорого и громоздко.

В последнее десятилетие в практику здравоохранения широким фронтом вошла ультразвуковая диагностика, основанная на использовании ультразвукового излучения.

Ультразвуковое излучение относится к невидимому спектру с длиною волны 0,77-0,08 мм и частотой колебаний свыше 20 Кгц. Звуковые колебания с частотой более 10 9 гц относятся к гиперзвуку. Ультразвук имеет определённые свойства:

  • 1.В однородной среде ультразвук (УЗ) распределяется прямолинейно с одинаковой скоростью.
  • 2. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, другая часть преломляется, продолжая прямолинейное распространение, третья - ослабляется.

Ослабление УЗ определяется так называемым ИМПЕДАНСОМ - ультразвуковым ослаблением. Величина его зависит от плотности среды и скорости распространения в ней УЗ волны. Чем выше градиент перепада акустической плотности пограничных сред, тем большая часть УЗ колебаний отражается. Например, на границе перехода УЗ из воздуха на кожу происходит отражение почти 100% колебаний (99,99%). Именно поэтому при ультразвуковом исследовании (УЗИ) необходимо смазывать поверхность кожи пациента водным желе, которое выполняет роль переходной среды, ограничивающей отражение излучения. УЗ почти полностью отражается от кальцинатов, давая резкое ослабление эхосигналов в виде акустической дорожки (дистальная тень). Наоборот, при исследовании кист и полостей, содержащих жидкость, возникает дорожка за счет компенсаторного усиления сигналов.

Наибольшее распространение в клинической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сканирование, сонография) и допплерография.

1. Одномерная эхография основана на отражении импульсов У3, которые фиксируются на мониторе в виде вертикальных всплесков (кривых) на прямой горизонтальной линии (линии развертки). Одномерный метод дает информацию о расстояниях между слоями тканей на пути ультразвукового импульса. Одномерная эхография до настоящего времени применяется в диагностике болезней головного мозга (эхоэнцефалография), органа зрения, сердца. В нейрохирургии эхоэнцефалография используется для определения размеров желудочков и положения срединных диэнцефальных структур. В офтальмологической практике этот метод применяется для изучения структур глазного яблока, помутнения стекловидного тела, отслойки сетчатки или сосудистой оболочки, для уточнения локализации инородного тела или опухоли в орбите. В кардиологической клинике эхография оценивает структуру сердца в виде кривой на видеомониторе называемой М-эхограммой (motion - движение).

2. Двухмерное ультразвуковое сканирование (сонография). Позволяет получить двухмерное изображение органов (В-метод, brightness - яркость). При сонографии идет перемещение датчика в направлении перпендикулярном линии распространения ультразвукового луча. Отраженные импульсы сливаются в виде светящихся точек на мониторе. Поскольку датчик находится в постоянном движении, а экран монитора имеет длительное свечение, то отраженные импульсы сливаются, формируя изображение сечения обследуемого органа. Современные аппараты имеют до 64 степеней градации цвета, именуемой «серой шкалой», обеспечивающей разницу в структурах органов и тканей. Дисплей делает изображение в двух качествах: позитивном (белый фон, черное изображение) и негативном (черный фон, белое изображение).

Визуализация в режиме реального времени отражает динамическое изображение движущихся структур. Она обеспечивается разнонаправленными датчиками, имеющих до 150 и более элементов - линейное сканирование, либо из одного, но совершающего быстрые колебательные движения - секторальное сканирование. Картина исследуемого органа при УЗИ в масштабе реального времени возникает на видеомониторе мгновенно с момента исследования. Для исследования органов прилегающих к открытым полостям (прямой кишке, влагалищу, ротовой полости, пищеводу, желудку, толстой кишке) - используют специальные интраректальные, интравагинальные и другие внутриполостные датчики.

3.Допплеровская эхолокация - метод ультразвукового диагностического исследования движущихся объектов (элементов крови), основанный на эффекте Допплера. Эффект Допплера связан с изменением частоты ультразвуковой волны, воспринимаемой датчиком, происходящее вследствие перемещения исследуемого объекта относительно датчика: частота эхосигнала, отраженного от движущегося объекта, отличается от частоты излученного сигнала. Существует две модификации допплерографии:

  • а) - непрерывная, которая наиболее эффективна при измерении высоких скоростей кровотока в местах сужения сосудов, однако непрерывная допплерография имеет существенный недостаток - она даёт суммарную скорость движения объекта, а не только потока крови;
  • б) - импульсная допплерография лишена этих недостатков и позволяет измерить малые скорости на большой глубине или большие скорости на малой глубине в нескольких контрольных объектах малой величины.

Допплерография используется в клинике для изучения формы контуров и просветов кровеносных сосудов (сужения, тромбоз, отдельные склеротические бляшки). Важное значение в клинике УЗ диагностики в последние годы приобретает сочетание сонографии и допплерографии (т.н. дуплексная сонография), которая и позволяет выявить изображение сосудов (анатомическая информация) и получает запись кривой кровотока в них (физиологическая информация), к тому же в современных ультразвуковых аппаратах имеется система, позволяющая раскрашивать разнонаправленные потоки крови в разные цвета (синий и красный), так называемое цветное допплеровское картирование. Дуплексная сонография, цветное картирование позволяют следить за кровенаполнением плаценты, сокращениями сердца у плода, за направлением кровотока в камерах сердца, определять обратный ток крови в системе воротной вены, вычислять степень стеноза сосудов и т.д.

В последние годы стали известны некоторые биологические эффекты у персонала при проведении УЗ исследований. Действие УЗ через воздух прежде всего сказывается на критическом объёме, каковым является уровень сахара в крови, отмечаются электролитные сдвиги, повышается утомляемость, возникает головная боль, тошнота, шум в ушах, раздражительность. Однако в большинстве случаев эти признаки носят неспецифический характер и имеют выраженную субъективную окраску. Этот вопрос требует дальнейшего изучения.

Медицинская термография - метод регистрации естественного теплового излучения тела человека в виде невидимых инфракрасных излучений. Инфракрасное излучение (ИКИ) дают все тела с температурой выше минус 237 0 С. Длина волны ИКИ от 0,76 до 1 мм. Энергия излучения меньше, чем у квантов видимого света. ИКИ поглощается и слабо рассеивается, имеет как волновое, так и квантовое свойство. 0собенности метода:

  • 1. Абсолютно безвреден.
  • 2. Высокая скорость исследования (1 - 4 мин.).
  • 3. Достаточно точный - улавливает колебания в 0,1 0 С.
  • 4. Имеет возможность одновременно оценивать функциональное состояние нескольких органов и систем.

Методики термографического исследования:

  • 1. Контактная термография основана на использовании термоиндакаторных пленок на жидких кристаллах в цветном изображении. По цветному окрашиванию изображения с помощью калориметрической линейки судят о температуре поверхностных тканей.
  • 2. Дистанционная инфракракрасная термография - самый распространенный метод терморгафии. Она обеспечивает получение изображения теплового рельефа поверхности тела и измерение температуры в любом участке тела человека. Дистанционный тепловизор дает возможность получать на экране аппарата отображение теплового поля человека в виде черно-белого или цветного изображения. Эти изображения можно зафиксировать на фотохимической бумаге и получить термограмму. Используя так называемые активные, стрессовые пробы: холодовые, гипертермические, гипергликемические, можно выявить начальные, даже скрытые нарушения терморегуляции поверхности тела человека.

В настоящее время термография применяется для обнаружения расстройств кровообращения, воспалительных, опухолевых и некоторых профессиональных заболеваний, особенно при диспансерном наблюдении. Считается, что этот метод, имея достаточную чувствительность, не обладает высокой специфичностью, что затрудняет его широкое применение при диагностике различных заболеваний.

Последние достижения науки и техники позволяют измерять температуру внутренних органов по собственному их излучению радиоволн в СВЧ диапазоне. Эти измерения производят с помощью микроволнового радиометра. Зa этим методом более перспективное будущее, чем за инфракрасной термографией.

Огромным событием последнего десятилетия явилось внедрение в клиническую практику поистине революционного метода диагностики ядерно-магнитной-резонансной томографии, именуемой в настоящее время магнитно-резонансной томографией (слово «ядерная» снято, чтобы не вызывать у населения радиофобии). Метод магнитно-резонансной томографии (МРТ) основан на улавливании электромагнитных колебаний от определенных атомов. Дело в том, что ядра атомов, содержащие нечётное количество протонов и нейтронов имеют собственный ядерно-магнитный спин, т.е. угловой момент вращения ядра вокруг собственной оси. К таким атомам относится водород, составная часть воды, которая в организме человека доходит до 90%. Подобный эффект дают и другие атомы, содержащие нечётное количество протонов и нейтронов (углерод, азот, натрий, калий и другие). Поэтому каждый атом подобен магниту и в обычных условиях оси углового момента располагаются хаотично. В магнитном поле диагностического диапазона при мощности порядка 0,35-1,5 Т (единица измерения магнитного поля названа в честь Тесла - сербского, югославского учeнoгo, имеющего 1000 изобретений), атомы ориентируются по направлению магнитного поля параллельно или антипараллельно. Если в этом состоянии наложить радиочастотное поле (порядка 6,6-15 Мгц), то возникает ядерно-магнитный резонанс (резонанс, как известно, возникает, когда частота возбуждения совпадает с собственной частотой системы). Этот радиочастотный сигнал улавливается детекторами и через компьютерную систему строится изображение, основанное на протонной плотности (чем больше протонов в среде, тем интенсивнее сигнал). Наиболее яркий сигнал дает жировая ткань (высокая протонная плотность). Наоборот, костная ткань из-за небольшого количества воды (протонов), дает наименьший сигнал. Для каждой ткани свой сигнал.

Магнитно-резонансная томография обладает рядом преимуществ перед остальными методами диагностической визуализации:

  • 1. Отсутствие лучевой нагрузки,
  • 2. Отсутствие необходимости применения контрастных веществ в большинстве случаев рутинной диагностики, так как МРТ позволяет видеть с осуды, особеннокрупные и средние без контрастирования.
  • 3. Возможность получения изображения в любой плоскости, включая три ортоганальные анатомические проекции, в отличие от рентгеновской компьютерной томографии, где исследование проводится в аксиальной проекции, и в отличии от УЗИ, где изображение ограниченное (продольное, поперечное, секторальное).
  • 4. Высокая разрешающая способность выявления структур мягких тканей.
  • 5. Нет необходимости специальной подготовки пациента к исследованию.

За последние годы появились новые методы лучевой диагностики: получение трехмерного изображения с использованием спиральной компьютерной рентгеновской томографии, возник метод использующий принцип виртуальной реальности с трехмерным изображением, моноклоналъная радионуклидная диагностика и некоторые другие методы, находящиеся на стадии эксперимента.

Таким образом, в этой лекции дана общая характеристика методов и методик лучевой диагностики, более подробное описание их будет дано в частных разделах.