Учет и использование тепловое расширение в технике. Применение различного расширение тел в быту. Тепловое расширение твёрдых тел

Известно, что под действием тепла частицы ускоряют свое хаотичное движение. Если нагревать газ, то молекулы, составляющие его, просто разлетятся друг от друга. Нагретая жидкость сначала увеличится в объеме, а затем начнет испаряться. А что будет с твердыми телами? Не каждое из них может изменить свое агрегатное состояние.

Термическое расширение: определение

Тепловое расширение - это изменение размеров и формы тел при изменении температуры. Математически можно высчитать объемный коэффициент расширения, позволяющий спрогнозировать поведение газов и жидкостей в изменяющихся внешних условиях. Чтобы получить такие же результаты для твердых тел, необходимо учитывать Физики выделили целый раздел для такого рода исследований и назвали его дилатометрией.

Инженерам и архитекторам необходимы знания о поведении разных материалов под воздействием высоких и низких температур для проектировки зданий, прокладывания дорог и труб.

Расширение газов

Тепловое расширение газов сопровождается расширением их объема в пространстве. Это заметили философы-естественники еще в глубокой древности, но построить математические расчеты получилось только у современных физиков.

В первую очередь ученые заинтересовались расширением воздуха, так как это казалось им посильной задачей. Они настолько рьяно взялись за дело, что получили довольно противоречивые результаты. Естественно, такой исход научное сообщество не удовлетворил. Точность измерения зависела от того, какой использовался термометр, от давления и множества других условий. Некоторые физики даже пришли к мнению, что расширение газов не зависит от изменения температуры. Или эта зависимость не полная...

Работы Дальтона и Гей-Люссака

Физики продолжали бы спорить до хрипоты или забросили бы измерения, если бы не Он и еще один физик, Гей-Люссак, в одно и то же время независимо друг от друга смогли получить одинаковые результаты измерений.

Люссак пытался найти причину такого количества разных результатов и заметил, что в некоторых приборах в момент опыта была вода. Естественно, в процессе нагревания она превращалась в пар и изменяла количество и состав исследуемых газов. Поэтому первое, что сделал ученый, - это тщательно высушил все инструменты, которые использовал для проведения эксперимента, и исключил даже минимальный процент влажности из исследуемого газа. После всех этих манипуляций первые несколько опытов оказались более достоверными.

Дальтон занимался этим вопросом дольше своего коллеги и опубликовал результаты еще в самом начале XIX века. Он высушивал воздух парами серной кислоты, а затем нагревал его. После серии опытов Джон пришел к выводу, что все газы и пар расширяются на коэффициент 0,376. У Люссака получилось число 0,375. Это и стало официальным результатом исследования.

Упругость водяных паров

Тепловое расширение газов зависит от их упругости, то есть способности возвращаться в исходный объем. Первым данный вопрос стал исследовать Циглер в середине восемнадцатого века. Но результаты его опытов слишком разнились. Более достоверные цифры получил который использовал для высоких температур папинов котел, а для низких - барометр.

В конце XVIII века французский физик Прони предпринял попытку вывести единую формулу, которая бы описывала упругость газов, но она получилась лишком громоздкая и сложная в использовании. Дальтон решил опытным путем проверить все расчеты, используя для этого сифонный барометр. Не смотря на то что температура не во всех опытах была одинакова, результаты получились очень точными. Поэтому он опубликовал их в виде таблицы в своем учебнике по физике.

Теория испарения

Тепловое расширение газов (как физическая теория) претерпевала различные изменения. Ученые пытались добраться до сути процессов, при которых получается пар. Здесь снова отличился известный уже нам физик Дальтон. Он высказал гипотезу, что любое пространство насыщается парами газа независимо от того, присутствует ли в этом резервуаре (помещении) какой-либо другой газ или пар. Следовательно, можно сделать вывод, что жидкость не будет испаряться, просто входя в соприкосновение с атмосферным воздухом.

Давление столба воздуха на поверхность жидкости увеличивает пространство между атомами, отрывая их друг от друга и испаряя, то есть способствует образованию пара. Но на молекулы пара продолжает действовать сила тяжести, поэтому ученые посчитали, что атмосферное давление никак не влияет на испарение жидкостей.

Расширение жидкостей

Тепловое расширение жидкостей исследовали параллельно с расширением газов. Научными изысканиями занимались те же самые ученые. Для этого они использовали термометры, аэрометры, сообщающиеся сосуды и прочие инструменты.

Все опыты вместе и каждый в отдельности опровергли теорию Дальтона о том, что однородные жидкости расширяются пропорционально квадрату температуры, на которую их нагревают. Конечно, чем выше температура, тем больше объем жидкости, но прямой зависимости между ним не было. Да и скорость расширения у всех жидкостей была разной.

Тепловое расширение воды, например, начинается с нуля градусов по Цельсию и продолжается с понижением температуры. Раньше такие результаты опытов связывали с тем, что расширяется не сама вода, а сужается емкость, в которой она находится. Но некоторое время спустя физик Делюка все-таки пришел к мысли, что причину следует искать в самой жидкости. Он решил найти температуру ее наибольшей плотности. Однако это ему не удалось ввиду пренебрежения некоторыми деталями. Румфорт, занимавшийся изучением этого явления, установил, что максимальная плотность воды наблюдается в пределах от 4 до 5 градусов по Цельсию.

Тепловое расширение тел

В твердых телах главным механизмом расширения является изменение амплитуды колебаний кристаллической решетки. Если говорить простыми словами, то атомы, входящие в состав материала и жестко сцепленные между собой, начинают «дрожать».

Закон теплового расширения тел сформулирован так: любое тело с линейным размером L в процессе нагревания на dT (дельта Т - разница между начальной температурой и конечной), расширяется на величину dL (дельта L - это производная коэффициента линейного теплового расширения на длину объекта и на разность температуры). Это самый простой вариант этого закона, который по умолчанию учитывает, что тело расширяется сразу во все стороны. Но для практической работы используют куда более громоздкие вычисления, так как в реальности материалы ведут себя не так, как смоделировано физиками и математиками.

Тепловое расширение рельса

Для прокладки железнодорожного полотна всегда привлекают инженеров-физиков, так как они могут точно вычислить, какое расстояние должно быть между стыками рельсов, чтобы при нагревании или охлаждении пути не деформировались.

Как уже было сказано выше, тепловое линейное расширение применимо для всех твердых тел. И рельс не стал исключением. Но есть одна деталь. Линейное изменение свободно происходит в том случае, если на тело не воздействует сила трения. Рельсы жестко прикреплены к шпалам и сварены с соседними рельсами, поэтому закон, который описывает изменение длинны, учитывает преодоление препятствий в виде погонных и стыковых сопротивлений.

Если рельс не может изменить свою длину, то с изменением температуры в нем нарастает тепловое напряжение, которое может как растянуть, так и сжать его. Этот феномен описывается законом Гука.

Т.И.РАДЧЕНКО (сош № 26, г. Владикавказ),
И.В.СИЛАЕВ (Северо-Осетинский госуниверситет)

[email protected] ,
г. Владикавказ, Респ. Северная Осетия (Алания)

Тепловое расширение твёрдых тел

    Изменится ли диаметр отверстия в круглой пластинке при её нагревании?

(Вопрос предложен газетой «Физика» в № 11/06.)

Примеры из техники

Диаметр отверстия при нагревании увеличивается. Это находит применение в технике. Например, в двигателях автомобилей ВАЗ-1111, «Таврия» ЗАЗ-1102 и др. каждый поршень соединяют с верхней головкой своего шатуна шарнирно, с помощью поршневого пальца (стальной трубки), который вставляется в соответствующие отверстия поршня и шатуна. При этом палец фиксируют в верхней головке шатуна путём горячей посадки, нагревая верхнюю часть шатуна. При остывании диаметр отверстия в головке уменьшается, и палец оказывается плотно зажатым, что исключает его продольные перемещения и образование задиров на стенках цилиндров, когда поршни совершают возвратно-поступательное движение .

Аналогично крепится предварительно нагретое зажимное кольцо на полуосях, связывающих дифференциал с ведущими колёсами, например, на автомобилях «Волга» и «Жигули». (Дифференциал – устройство, позволяющее ведущим колёсам автомобиля вращаться с разной частотой, например, на повороте, когда внутреннее колесо, ближнее к центру поворота, идёт по окружности меньшего радиуса, чем внешнее.) Наружный конец полуоси (с колесом автомобиля) установлен на шариковом подшипнике, наружное кольцо которого плотно зажато. Полуось вращается вместе с внутренним кольцом подшипника. Чтобы полуось не вышла из подшипника из-за продольных смещений, её удерживают зажимным кольцом . Это кольцо, будучи надетым на полуось, вращается вместе с ней. Оно закрыто кожухом полуоси и через пружинное кольцо упирается в закреплённый подшипник, что не даёт возможности полуоси с колесом отдаляться от продольной оси автомобиля.

Примеры можно было бы продолжить...

Физика теплового расширения

Рассмотрим теперь вопрос с точки зрения физики. Представим, что отверстие образовано восемью атомами или молекулами (дальше мы будем говорить о частицах ). Частицы твёрдого тела главным образом колеблются около своих положений равновесия и перескакивают на другие места достаточно редко – время их «оседлой» жизни составляет даже вблизи точки плавления 0,1–0,001 с, а при более низких температурах – уже часы и сутки (вспомним и о скорости диффузии в твёрдых телах) . Таким образом, количество частиц, обрамляющих отверстие, будет оставаться неизменным до тех пор, пока не начнётся переход в жидкую фазу. При повышении температуры размах колебаний каждой частицы увеличится, она станет занимать больше места в пространстве, следовательно, диаметр отверстия увеличится. Сближаться частицы не могут, т.к. при этом они начнут «перекрываться».

Чтобы привести научные объяснения, придётся вспомнить график зависимости силы взаимодействия F частиц от расстояния r между этими частицами . Он получается в результате сложения ординат соответствующих точек верхней кривой II, описывающей силу отталкивания, и нижней I, описывающей силу притяжения. Результирующая кривая III имеет достаточно сложную форму, т.к. сила отталкивания обратно пропорциональна тринадцатой степени расстояния, а сила притяжения – седьмой. Сходным образом выглядит кривая IV, показывающая зависимость от расстояния потенциальной энергии E p . В положении равновесия r 0 кривая III проходит через нуль (результирующая приложенных сил равна нулю), а кривая IV – через минимум (потенциальная яма). Это положение устойчивого равновесия, и при уменьшении расстояния между частицами будет производиться работа против сил отталкивания, что приведёт к уменьшению кинетической энергии частицы до нуля, так что «удара» одной частицы о другую, подобно удару бильярдных шаров, не произойдёт .

В целом же тепловое движение частиц рассматривается как их колебания возле центров, находящих друг от друга на равновесном расстоянии, которое различно для разных веществ. Свободный объём в жидкостях составляет примерно 29% всего объёма, а в твёрдых телах до 26% . «Молекулы (атомы) твёрдых тел расположены так плотно, что их электронные оболочки соприкасаются, а иногда перекрывают друг друга». Так что, видимо, правильнее говорить о положении не самих молекул, а их центров.

Посмотрим ещё раз на кривую IV. Глубина потенциальной ямы определяет энергию связи молекул. Обратим внимание, что кривая не симметрична относительно своего минимума. «По этой причине только очень малые колебания частиц около положения равновесия будут иметь гармонический характер. С ростом амплитуды колебаний (что происходит при повышении температуры) всё сильнее будет проявляться ангармоничность (т.е. отклонение колебаний от гармонических). Это приводит к возрастанию средних расстояний между частицами и, следовательно, к увеличению объёма» . «При более низкой температуре молекула совершает колебания около точки А в пределах отрезка А 1 А 2 . Среднее расстояние между взаимодействующими молекулами (вторую молекулу мы мысленно поместили в начало координат) есть r 0 . При повышении температуры энергия колебаний повышается; теперь молекула колеблется в пределах отрезка В 1 В 2 . Положению равновесия соответствует середина отрезка В 1 В 2 , т.е. точка В » . Таким образом, хотя амплитуды колебаний невелики, благодаря ангармонизму отдельные колебания не независимы, а связаны друг с другом . Поэтому r 0 (расстояние, на котором сумма сил притяжения и отталкивания двух молекул равна нулю) при повышении температуры начинает увеличиваться.

Учёт теплопроводности и теплового расширения твёрдых тел для двигателя внутреннего сгорания автомобиля

С тепловым расширением в технике приходится всё время считаться. Если взять упомянутые поршни в автомобильных двигателях, то уже здесь будет сразу несколько вариантов. Так, например, головка поршня (его верхняя часть) имеет несколько меньший диаметр, чем юбка (нижняя часть), т.к. головка непосредственно контактирует с нагретыми газами. Она сильнее нагревается и больше расширяется. При этом инженерам надо соблюдать два взаимоисключающих требования. С одной стороны, необходимо обеспечить хорошее уплотнение поршня с цилиндром, а с другой, избежать заклинивания поршня при нагревании. С этой целью по окружности головки делают канавки, в которые ставят специальные кольца: компрессионные и маслосъёмное.

Компрессионные кольца имеют разрезы, называемые замками , которые позволяют уплотнять зазор без заклинивания поршня. Заеданию препятствует и специальная форма юбки поршня – в виде эллипса, большая ось которого перпендикулярна оси поршневого пальца и лежит в плоскости действия боковых сил. В результате устраняется и стук при холодном двигателе, и заедание юбки при нагреве: эллипс становится окружностью, и поршень продолжает свободно перемещаться внутри цилиндра.

Предотвратить заклинивание можно также, сделав в юбке компенсационные разрезы: косые, Т-образные, П-образные, благодаря которым расширение металла при нагревании не приводит к увеличению диаметра поршня. Уменьшить нагревание верхнего поршневого компрессионного кольца можно за счёт канавки, проточенной в поршне, или огневого пояска, препятствующего поступлению дополнительного количества теплоты от верхней части головки поршня, разогретой находящимися в цилиндре горячими газами.

Для лучшего отвода тепла от поршней и цилиндров как сами поршни, так и головка цилиндров изготавливаются из алюминиевого сплава, обладающего хорошей теплопроводностью. Есть двигатели, где весь блок цилиндров отлит из алюминиевого сплава. Кроме того, предусмотрена специальная система охлаждения (воздушная или жидкостная). Например, так называемая рубашка охлаждения жидкостной системы обеспечивает отвод тепла и от цилиндров, и от камер сгорания.

Литература

1. Плеханов И.П. Автомобиль. – М.: Просвещение, 1984.

2. Шестопалов К.С. , Демиховский С.Ф. Легковые автомобили. – М.: ДОСААФ, 1989.

3. Подгорнова И.И . Молекулярная физика в средней школе. – М.: Просвещение, 1970.

4. Бергер Н.М . Изучение тепловых явлений в курсе физики средней школы. – М.: Просвещение, 1981.

5. Шамаш С.Я. Методика преподавания физики в средней школе. – М.: Просвещение, 1975.

6. Блудов М.И. Беседы по физике. – М.: Просвещение, 1992.

7. Савельев А.В. Курс общей физики: Т. 1. – М.: Наука, 1970.

8. Физический энциклопедический словарь: Под ред. Прохорова А.М. – М.: Советская энциклопедия, 1984.

Общеизвестно, что твердые тела при нагревании увеличивают свой объем. Это - тепловое расширение. Рассмотрим причины, приводящие к увеличению объема тела при нагревании.

Очевидно, что объем кристалла растет с увеличением среднего расстояния между атомами. Значит, повышение температуры влечет за собой увеличение среднего расстояния между атомами кристалла. Чем же обусловлено увеличение расстояния между атомами при нагревании?

Повышение температуры кристалла означает увеличение энергии теплового движения, т. е. тепловых колебаний атомов в решетке (см. стр. 459), а следовательно, и рост амплитуды этих колебаний.

Но увеличение амплитуды колебаний атомов не всегда приводит к увеличению среднего расстояния между ними.

Если бы колебания атомов были строго Уармоническими, то каждый атом настолько же приближался бы к одному из своих соседей, насколько удалялся от другого, и увеличение амплитуды его колебаний не привело бы к изменению среднего межатомного расстояния, а значит, и к тепловому расширению.

В действительности атомы в кристаллической решетке совершают ангармонические (т. е. не гармонические) колебания. Это Обусловлено характером зависимости сил взаимодействия между/атомами от расстояния между ними. Как было указано в начале настоящей главы (см. рис. 152 и 153), зависимость эта такова, что при больших расстояниях между атомами силы взаимодействия между атомами проявляются как силы притяжения, а при уменьшении этого расстояния меняют свой знак и становятся силами отталкивания, быстро возрастающими с уменьшением расстояния.

Это приводит к тому, что при возрастании «амплитуды» колебаний атомов вследствие нагревания кристалла рост сил отталкивания между атомами преобладает над ростом сил притяжения. Другими словами, атому «легче» удалиться от соседа, чем приблизиться к другому. Это, конечно, должно привести к увеличению среднего расстояния между атомами, т. е. к увеличению объема тела при его нагревании.

Отсюда следует, что причиной теплового расширения твердых тел является ангармоничность колебаний атомов в кристаллической решетке.

Количественно тепловое расширение характеризуется коэффициентами линейного и объемного расширения, которые определяются следующим образом. Пусть тело длиной I при изменении температуры на градусов изменяет свою длину на Коэффициент линейного расширения определяется из соотношения

т. е. коэффициент линейного расширения равен относительному изменению длины при изменении температуры на один градус. Точно так же коэффициент объемного расширения определяется формулой

т. е. коэффициент равен относительному изменению объема отнесенному к одному градусу.

Из этих формул следует, что длина и объем при некоторой температуре, отличающейся от начальной на градусов, выражаются формулами (при малом

где начальные длина и объем тела.

Вследствие анизотропии кристаллов коэффициент линейного расширения а может быть различным в разных направлениях. Это означает, что если из данного кристалла выточить шар, то после его нагревания он потеряет свою сферическую форму. Можно показать, что в самом общем случае такой шар при нагревании превращается в трехосный эллипсоид, оси которого связаны с кристаллографическими осями кристалла.

Коэффициенты теплового расширения по трем осям этого эллипсоида называются главными коэффициентами расширения кристалла.

Если их обозначить соответственно через то коэффициент объемного расширения кристалла

Для кристаллов с кубической симметрией, так же как и для изотропных тел,

Шар, выточенный из таких тел, остается шаром и после нагревания (разумеется, большего диаметра).

В некоторых кристаллах (например, гексагональных)

Коэффициенты линейного и объемного расширения практически остаются постоянными, если интервалы температур, в которых они измеряются, малы, а сами температуры высокие. Вообще же коэффициенты теплового расширения зависят от температуры и притом так же, как теплоемкость, т. е. при низких температурах коэффициенты уменьшаются с понижением температуры пропорционально кубу температуры, стремясь, как и теплоемкость,

к нулю при абсолютном нуле. Это неудивительно, так как и теплоемкость, и тепловое расширение связаны с колебаниями решетки: теплоемкость дает количество теплоты, необходимое для увеличения средней энергии тепловых колебаний атомов, зависящей от амплитуды колебаний, коэффициент же теплового расширения непосредственно связан со средними расстояниями между атомами, которые тоже зависят от амплитуды атомных колебаний.

Отсюда следует важный закон, открытый Грюнейзеном: отношение коэффициента теплового расширения к атомной теплоемкости твердого тела для данного вещества есть величина постоянная (т. е. не зависящая от температуры).

Коэффициенты теплового расширения твердых тел обычно очень малы, как это видно из табл. 22. Приведенные в этой таблице значения коэффициента а относятся к интервалу температур между и

Таблица 22 (см. скан) Коэффициенты теплового расширения твердых тел

Некоторые вещества имеют особенно малый коэффициент теплового расширения. Таким свойством отличается, например, кварц Другим примером может служить сплав никеля и железа (36% Ni), известный под названием инвар Эти вещества получили широкое применение в точном приборостроении.

  • Хотя линейные размеры и объемы тел при изменении температуры меняются мало, тем не менее это изменение нередко приходится учитывать в практике; в то же время это явление широко используется в быту и технике.

Учет теплового расширения тел

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 10 8 Па, т. е. действует на опоры с силой 1,6 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение где - относительное удлинение, a E - модуль Юнга. Согласно (9.2.1) . Подставляя это значение относительного удлинения в формулу закона Гука, получим

У стали модуль Юнга Е = 2,1 10 11 Па, температурный коэффициент линейного расширения α 1 = 9 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.

Рис. 9.5

Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).

Рис. 9.6

Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Рис. 9.7

Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла - понижается.

Использование теплового расширения в технике

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8).

Рис. 9.8

При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметаллических пластинок широко используется для измерения температуры и ее регулирования.

Рис. 9.9

Терморегулятор

На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкосновении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится.

Рис. 9.10

При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д. Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла - чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.

Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойство жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измерения температуры - термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.

При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.

Тепловое расширение

Тепловое расширение - изменение линейных размеров и формы тела при изменении его температуры . Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией .

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

,

где - так называемый коэффициент линейного теплового расширения . Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Тепловое расширение" в других словарях:

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении р характеризуется изобарным коэфф. расширения (коэфф. объёмного Т. p.) a=1/VX(dV/dT)p, где V объём тела (твёрдого, жидкого или газообразного), Т его… … Физическая энциклопедия

    ТЕПЛОВОЕ РАСШИРЕНИЕ, изменение размеров и формы тела при изменении его температуры. Характеризуется коэффициентами объемного (для твердых тел и линейного) теплового расширения, т.е. изменением объема (линейных размеров) тела при изменении его… … Современная энциклопедия

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объемного расширения, а для твердых тел и коэффициентом линейного расширения, где l изменение линейного размера, ?V объема тела, ?T температуры, индекс указывает на… … Большой Энциклопедический словарь

    тепловое расширение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN heat expansionthermal expansion … Справочник технического переводчика

    ТЕПЛОВОЕ РАСШИРЕНИЕ - изменение размеров и формы тел при их нагревании. Различие в силах сцепления между молекулами тела в различных его агрегатных (см.) сказывается на величине Т. р. Твёрдые тела, молекулы которых сильно взаимодействуют, расширяются мало, жидкости… … Большая политехническая энциклопедия

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

    тепловое расширение - šiluminis plėtimasis statusas T sritis Standartizacija ir metrologija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis chemija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion rus. тепловое расширение; термическое расширение … Chemijos terminų aiškinamasis žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis fizika atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение, n; термическое расширение, n pranc. dilatation thermique, f; expansion… … Fizikos terminų žodynas

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объёмного расширения αυ = 1/V (ΔV/VT)Ξ, а для твёрдых тел и коэффициентом линейного расширения αл = 1/l(Δl/ΔТ)Ξ, где Δl изменение линейного размера, ΔV объёма тела, ΔТ … … Энциклопедический словарь

Книги

  • Тепловое расширение твердых тел , С. И. Новикова , В монографии подробно рассмотрены различные аспекты существующих теорий теплового расширения твердых тел: вопросы взаимосвязи теплового расширения с другими свойствами твердых тел, влияние… Категория: Физика твердого тела. Кристаллография Издатель: Наука ,
  • Физика. Тепловые явления. Тепловое расширение твердых и жидких тел. Газы. 9-11 классы. Задачи для подготовки к олимпиадам ,